168
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exploring the Association Between PRC2 Genes Variants and Lung Cancer Risk in Chinese Han Population

, ORCID Icon, , , , , , , , , , , & ORCID Icon show all
Pages 499-513 | Received 04 May 2023, Accepted 27 Jun 2023, Published online: 03 Jul 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Brody H. Lung cancer. Nature. 2020;587(7834):S7.
  • Chung CC, Chanock SJ. Current status of genome-wide association studies in cancer. Hum Genet. 2011;130(1):59–78.
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. 2004;1–1438.
  • Czoli CD, Hammond D. TSNA exposure: levels of NNAL among Canadian tobacco users. Nicotine Tob Res. 2015;17(7):825–830.
  • Jemal A, Miller KD, Ma J, et al. Higher lung cancer incidence in young women than young men in the United States. N Engl J Med. 2018;378(21):1999–2009.
  • Wheeler DA, Wang L. From human genome to cancer genome: the first decade. Genome Res. 2013;23(7):1054–1062.
  • Hamra GB, Guha N, Cohen A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906–911.
  • Benusiglio PR, Fallet V, Sanchis-Borja M, Coulet F, Cadranel J. Lung cancer is also a hereditary disease. Eur Respir Rev. 2021;30(162):564.
  • Fois SS, Paliogiannis P, Zinellu A, Fois AG, Cossu A, Palmieri G. Molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer. Int J Mol Sci. 2021;22(2):34.
  • Shields PG. Molecular epidemiology of smoking and lung cancer. Oncogene. 2002;21(45):6870–6876.
  • Shastry BS. SNP alleles in human disease and evolution. J Hum Genet. 2002;47(11):561–566.
  • Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077–1082.
  • Horn S, Figl A, Rachakonda PS, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–961.
  • Sur I, Tuupanen S, Whitington T, Aaltonen LA. Taipale J: lessons from functional analysis of genome-wide association studies. Cancer Res. 2013;73(14):4180–4184.
  • Wang C, Li Y, Li YW, et al. HOTAIR lncRNA SNPs rs920778 and rs1899663 are associated with smoking, male gender, and squamous cell carcinoma in a Chinese lung cancer population. Acta Pharmacol Sin. 2018;39(11):1797–1803.
  • Conway E, Healy E, Bracken AP. PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol. 2015;37:42–48.
  • van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. The complexity of PRC2 subcomplexes. Trends Cell Biol. 2019;29(8):660–671.
  • Jiao L, Liu X. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science. 2015;350(6258):aac4383.
  • Højfeldt JW, Laugesen A, Willumsen BM, et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol Biol. 2018;25(3):225–232.
  • Pengelly AR, Copur Ö, Jäckle H, Herzig A, Müller J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science. 2013;339(6120):698–699.
  • Raspin K, FitzGerald LM, Marthick JR, et al. A rare variant in EZH2 is associated with prostate cancer risk. Int J Cancer. 2021;149(5):1089–1099.
  • Liu LC, Chien YC, Wu GW, et al. Analysis of EZH2 genetic variants on triple-negative breast cancer susceptibility and pathology. Int J Med Sci. 2022;19(6):1023–1028.
  • Su KJ, Lin CW, Chen MK, Yang SF, Yu YL. Effects of EZH2 promoter polymorphisms and methylation status on oral squamous cell carcinoma susceptibility and pathology. Am J Cancer Res. 2015;5(11):3475–3484.
  • Sung H, Yang HH, Zhang H, et al. Common genetic variants in epigenetic machinery genes and risk of upper gastrointestinal cancers. Int J Epidemiol. 2015;44(4):1341–1352.
  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.
  • Byun J, Han Y, Li Y, et al. Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer. Nat Genet. 2022;54(8):1167–1177.
  • Musolf AM, Moiz BA, Sun H, et al. Whole exome sequencing of highly aggregated lung cancer families reveals linked loci for increased cancer risk on chromosomes 12q, 7p, and 4q. Cancer Epidemiol Biomarkers Prev. 2020;29(2):434–442.
  • Liu P, Vikis HG, Wang D, et al. Familial aggregation of common sequence variants on 15q24-25.1 in lung cancer. J Natl Cancer Inst. 2008;100(18):1326–1330.
  • Deb G, Singh AK, Gupta S. EZH2: not EZHY (easy) to deal. Mol Cancer Res. 2014;12(5):639–653.
  • Jiang T, Wang Y, Zhou F, Gao G, Ren S, Zhou C. Prognostic value of high EZH2 expression in patients with different types of cancer: a systematic review with meta-analysis. Oncotarget. 2016;7(4):4584–4597.
  • Laugesen A, Højfeldt JW, Helin K. Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb Perspect Med. 2016;6(9):86.
  • Lohavanichbutr P, Sakoda LC, Amos CI, et al. Common TDP1 polymorphisms in relation to survival among small cell lung cancer patients: a multicenter study from the international lung cancer consortium. Clin Cancer Res. 2017;23(24):7550–7557.
  • Wang Z, Wei Y, Zhang R, et al. Multi-omics analysis reveals a HIF network and hub gene EPAS1 associated with lung adenocarcinoma. EBioMedicine. 2018;32:93–101.
  • Liu CY, Stücker I, Chen C, et al. Genome-wide gene-asbestos exposure interaction association study identifies a common susceptibility variant on 22q13.31 associated with lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2015;24(10):1564–1573.
  • Yu JI, Kang IH, Seo GS, Choi SC, Yun KJ, Chae SC. Promoter polymorphism of the EED gene is associated with the susceptibility to ulcerative colitis. Dig Dis Sci. 2012;57(6):1537–1543.