405
Views
19
CrossRef citations to date
0
Altmetric
Review

Virus–Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development

, ORCID Icon, & ORCID Icon
Pages 1-15 | Published online: 06 Mar 2020

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Seymour LW, Fisher KD. Oncolytic viruses: finally delivering. Br J Cancer. 2016;114(4):357–361. doi:10.1038/bjc.2015.48126766734
  • Komarova NL, Wodarz D. ODE models for oncolytic virus dynamics. J Theor Biol. 2010;263(4):530–543. doi:10.1016/j.jtbi.2010.01.00920085772
  • Sinkovics JG, Horvath JC. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp (Warsz). 2008;56(S1):1–59. doi:10.1007/s00005-008-0047-918250975
  • Southam CM, Moore AE. Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer. 1952;5(5):1025–1034. doi:10.1002/(ISSN)1097-014212988191
  • Georgiades J, Zielinski T, Cicholska A, Jordan E. Research on the oncolytic effect of APC viruses in cancer of the cervix uteri; preliminary report. Biul Inst Med Morsk Gdansk. 1959;10:49–57.13827367
  • Lorence RM, Roberts MS, Groene WS, Rabin H. Replication-competent, oncolytic newcastle disease virus for cancer therapy. Monogr Virol. 2001;22:160–182.
  • Csatary LK, Eckhardt S, Bukosza I, et al. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect Prev. 1993;17(6):619–627.8275514
  • Asada T. Treatment of human cancer with mumps virus. Cancer. 1974;34(6):1907–1928. doi:10.1002/(ISSN)1097-01424611607
  • Peters C, Grandi P, Nigim F. Updates on oncolytic virus immunotherapy for cancers. Mol Ther Oncolytics. 2019;12:259–262. doi:10.1016/j.omto.2019.01.008
  • Hu JCC, Coffin RS, Davis CJ, et al. A Phase I Study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737. doi:10.1158/1078-0432.CCR-06-075917121894
  • Greig SL. Talimogene laherparepvec: first global approval. Drugs. 2016;76(1):147–154. doi:10.1007/s40265-015-0522-726620366
  • Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98(5):298–300. doi:10.1093/jnci/djj11116507823
  • Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: the Rigvir(R) story. Eur J Pharmacol. 2018;837:117–126. doi:10.1016/j.ejphar.2018.08.04230179611
  • Babiker HM, Riaz IB, Husnain M, Borad MJ. Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma. Oncolytic Virother. 2017;6:11–18. doi:10.2147/OV.S10007228224120
  • Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Applications of coxsackievirus A21 in oncology. Oncolytic Virother. 2014;3:47–55. doi:10.2147/OV.S5632227512662
  • Miles LA, Burga LN, Gardner EE, Bostina M, Poirier JT, Rudin CM. Anthrax toxin receptor 1 is the cellular receptor for seneca valley virus. J Clin Invest. 2017;127(8):2957–2967. doi:10.1172/JCI9347228650343
  • Angelova AL, Aprahamian M, Balboni G, et al. Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: in vitro and in vivo studies. Mol Ther. 2009;17(7):1164–1172. doi:10.1038/mt.2009.7819367260
  • Desjardins A, Sampson J, Peters K, et al. Final results of a Phase 1 trial of an oncolytic Polio/Rhinovirus Recombinant (Pvsripo) against Recurrent Glioblastoma (Gbm). Neuro-Oncology. 2014;16(suppl 5):v13–v13.
  • Zhang Q, Liang C, Yu YA, Chen N, Dandekar T, Szalay AA. The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genomics. 2009;282(4):417–435. doi:10.1007/s00438-009-0475-119701652
  • Di Giovine P, Settembre EC, Bhargava AK, et al. Structure of herpes simplex virus glycoprotein d bound to the human receptor nectin-1. PLoS Pathog. 2011;7(9):e1002277. doi:10.1371/journal.ppat.100227721980294
  • Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA. 2013;110(18):7306. doi:10.1073/pnas.121444111023589850
  • Carter GC, Law M, Hollinshead M, Smith GL. Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans. J Gen Virol. 2005;86(5):1279–1290. doi:10.1099/vir.0.80831-015831938
  • Jhawar SR, Thandoni A, Bommareddy PK, et al. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol. 2017;7:202. doi:10.3389/fonc.2017.0020228955655
  • Mansour M, Palese P, Zamarin D. Oncolytic specificity of newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol. 2011;85(12):6015. doi:10.1128/JVI.01537-1021471241
  • Strong JE, Coffey MC, Tang D, Sabinin P, Lee PWK. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 1998;17(12):3351. doi:10.1093/emboj/17.12.33519628872
  • Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14:642. doi:10.1038/nrd466326323545
  • Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559. doi:10.1038/nrc377024990523
  • Kepp O, Galluzzi L, Martins I, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 2011;30(1):61–69. doi:10.1007/s10555-011-9273-421249425
  • Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–2788. doi:10.1200/JCO.2014.58.337726014293
  • Puzanov I, Milhem MM, Minor D, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(22):2619–2626. doi:10.1200/JCO.2016.67.152927298410
  • Park B-H, Hwang T, Liu T-C, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9(6):533–542. doi:10.1016/S1470-2045(08)70107-418495536
  • Noonan AM, Farren MR, Geyer SM, et al. Randomized phase 2 trial of the oncolytic virus pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther. 2016;24(6):1150–1158. doi:10.1038/mt.2016.6627039845
  • Guo ZS, Liu Z, Kowalsky S, et al. Oncolytic immunotherapy: conceptual evolution, current strategies, and future perspectives. Front Immunol. 2017;8:555. doi:10.3389/fimmu.2017.0055528555136
  • Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol. 2018;9:866. doi:10.3389/fimmu.2018.0086629755464
  • Andtbacka RHI, Curti B, Hallmeyer S, et al. Phase II CALM extension study: enhanced immune-cell infiltration within the tumour micro-environment of patients with advanced melanoma following intralesional delivery of Coxsackievirus A21. Eur J Cancer. 2015;51:S677–S677. doi:10.1016/S0959-8049(16)31854-8
  • Silk AW, Kaufman H, Gabrail N, et al. Abstract CT026: phase 1b study of intratumoral Coxsackievirus A21 (CVA21) and systemic pembrolizumab in advanced melanoma patients: interim results of the CAPRA clinical trial. Cancer Res. 2017;77(13 Supplement):CT026.
  • Andtbacka RHI, Curti BD, Hallmeyer S, et al. Phase II calm extension study: coxsackievirus A21 delivered intratumorally to patients with advanced melanoma induces immune-cell infiltration in the tumor microenvironment. J ImmunoTher Cancer. 2015;3(Suppl 2):P343. doi:10.1186/2051-1426-3-S2-P343
  • Zhang Z, Zou W, Wang J, et al. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, soluble Flt-1. Mol Ther. 2005;11(4):553–562. doi:10.1016/j.ymthe.2004.12.01515771958
  • Gholami S, Marano A, Chen NG, et al. A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res Treat. 2014;148(3):489–499. doi:10.1007/s10549-014-3180-725391896
  • Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22(5):1048. doi:10.1158/1078-0432.CCR-15-266726719429
  • Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14(4):839–846. doi:10.1080/21645515.2017.141289629420123
  • Cox RM, Plemper RK. Structure and organization of paramyxovirus particles. Curr Opin Virol. 2017;24:105–114. doi:10.1016/j.coviro.2017.05.00428601688
  • Wodarz D, Hofacre A, Lau JW, Sun Z, Fan H, Komarova NL. Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches. PLoS Comput Biol. 2012;8(6):e1002547. doi:10.1371/journal.pcbi.100254722719239
  • Wodarz D. Use of oncolytic viruses for the eradication of drug-resistant cancer cells. J R Soc Interface. 2009;6(31):179–186. doi:10.1098/rsif.2008.019118664430
  • Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018;16(8):e3000003. doi:10.1371/journal.pbio.300000330102691
  • Helenius A. Virus entry: looking back and moving forward. J Mol Biol. 2018;430(13):1853–1862. doi:10.1016/j.jmb.2018.03.03429709571
  • Kumar CS, Dey D, Ghosh S, Banerjee M. Breach: host membrane penetration and entry by nonenveloped viruses. Trends Microbiol. 2018;26(6):525–537. doi:10.1016/j.tim.2017.09.01029079499
  • Jolly CL, Sattentau QJ. Attachment factors In: Pöhlmann S, Simmons G, editors. Viral Entry into Host Cells. New York: Springer New York; 2013:1–23.
  • Vähä-Koskela M, Hinkkanen A. Tumor restrictions to oncolytic virus. Biomedicines. 2014;2(2):163–194. doi:10.3390/biomedicines202016328548066
  • McCarthy C, Jayawardena N, Burga LN, Bostina M. Developing picornaviruses for cancer therapy. Cancers. 2019;11(5):685. doi:10.3390/cancers11050685
  • Bostina M. Monoclonal antibodies point to achilles’ heel in picornavirus capsid. PLoS Biol. 2019;17(4):e3000232. doi:10.1371/journal.pbio.300023230995226
  • Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:195. doi:10.3389/fonc.2017.0019528944214
  • He Y, Mueller S, Chipman PR, et al. Complexes of Poliovirus serotypes with their common cellular receptor, CD155. J Virol. 2003;77(8):4827. doi:10.1128/JVI.77.8.4827-4835.200312663789
  • Anderson BD, Nakamura T, Russell SJ, Peng K-W. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004;64(14):4919. doi:10.1158/0008-5472.CAN-04-088415256464
  • Bergelson JM, Shepley MP, Chan BM, Hemler ME, Finberg RW. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992;255(5052):1718–1720. doi:10.1126/science.15535611553561
  • Yu Z, Adusumilli PS, Eisenberg DP, et al. Nectin-1 expression by squamous cell carcinoma is a predictor of herpes oncolytic sensitivity. Mol Ther. 2007;15(1):103–113. doi:10.1038/sj.mt.630000917164781
  • Carfí A, Willis SH, Whitbeck JC, et al. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell. 2001;8(1):169–179. doi:10.1016/S1097-2765(01)00298-211511370
  • Xiao C, Bator-Kelly CM, Rieder E, et al. The crystal structure of Coxsackievirus A21 and its interaction with ICAM-1. Structure. 2005;13(7):1019–1033. doi:10.1016/j.str.2005.04.01116004874
  • Yoder JD, Cifuente JO, Pan J, Bergelson JM, Hafenstein S. The crystal structure of a Coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with Decay-Accelerating Factor (DAF) Provide a new footprint of DAF on the virus surface. J Virol. 2012;86(23):12571. doi:10.1128/JVI.01592-1222973031
  • Rea VEA, Rossi FW, Paulis AD, Ragno P, Selleri C, Montuori N. 67 kDa laminin receptor: structure, function and role in cancer and infection. Infez Med. 2012;20(Suppl 2):8–12.
  • Gong J, Mita MM. Activated Ras signaling pathways and reovirus oncolysis: an update on the mechanism of preferential reovirus replication in cancer cells. Front Oncol. 2014;4:167. doi:10.3389/fonc.2014.0016725019061
  • Norman KL, Hirasawa K, Yang A-D, Shields MA, Lee PWK. Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci U S A. 2004;101(30):11099. doi:10.1073/pnas.040431010115263068
  • Stojdl DF, Lichty BD, tenOever BR, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell. 2003;4(4):263–275. doi:10.1016/S1535-6108(03)00241-114585354
  • Morizono K, Xie Y, Ringpis G-E, et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med. 2005;11:346. doi:10.1038/nm119215711560
  • Muik A, Stubbert LJ, Jahedi RZ, et al. Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res. 2014;74(13):3567–3578. doi:10.1158/0008-5472.CAN-13-330624812275
  • Nakamura T, Peng K-W, Harvey M, et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol. 2005;23(2):209–214. doi:10.1038/nbt106015685166
  • Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998;72(12):9706–9713. doi:10.1128/JVI.72.12.9706-9713.19989811704
  • Nakano K, Asano R, Tsumoto K, et al. Herpes simplex virus targeting to the EGF receptor by a gD-specific soluble bridging molecule. Mol Ther. 2005;11(4):617–626. doi:10.1016/j.ymthe.2004.12.01215771964
  • He B, Gross M, Roizman B. The γ1 34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA. 1997;94(3):843.9023344
  • Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357(9267):1513–1518. doi:10.1016/S0140-6736(00)04638-911377626
  • Tomazin R, van Schoot NEG, Goldsmith K, et al. Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J Virol. 1998;72(3):2560. doi:10.1128/JVI.72.3.2560-2563.19989499125
  • Kaufman HL, Ruby CE, Hughes T, Slingluff CL. Current status of granulocyte–macrophage colony-stimulating factor in the immunotherapy of melanoma. J ImmunoTher Cancer. 2014;2(1):11. doi:10.1186/2051-1426-2-1124971166
  • Dix BR, O’Carroll SJ, Myers CJ, Edwards SJ, Braithwaite AW. Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53. Cancer Res. 2000;60(10):2666.10825139
  • Rogulski KR, Freytag SO, Zhang K, et al. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res. 2000;60(5):1193.10728673
  • Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6:879. doi:10.1038/7863810932224
  • Martínez-Vélez N, Garcia-Moure M, Marigil M, et al. The oncolytic virus delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nat Commun. 2019;10(1):2235. doi:10.1038/s41467-019-10043-031138805
  • McCart JA, Ward JM, Lee J, et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 2001;61(24):8751.11751395
  • Breitbach CJ, Burke J, Jonker D, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477:99. doi:10.1038/nature1035821886163
  • Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329. doi:10.1038/nm.308923396206
  • Heo J, Breitbach CJ, Moon A, et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol Ther. 2011;19(6):1170–1179. doi:10.1038/mt.2011.3921427706
  • Atsumi S, Matsumine A, Toyoda H, et al. Oncolytic virotherapy for human bone and soft tissue sarcomas using live attenuated poliovirus. Int J Oncol. 2012;41(3):893–902. doi:10.3892/ijo.2012.151422692919
  • Ansardi DC, Porter DC, Jackson CA, Gillespie GY, Morrow CD. RNA replicons derived from poliovirus are directly oncolytic for human tumor cells of diverse origins. Cancer Res. 2001;61(23):8470–8479.11731430
  • Toyoda H, Yin J, Mueller S, Wimmer E, Cello J. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. 2007;67(6):2857–2864. doi:10.1158/0008-5472.CAN-06-371317363609
  • Jahan N, Wimmer E, Mueller S. A host-specific, temperature-sensitive translation defect determines the attenuation phenotype of a human rhinovirus/poliovirus chimera, PV1(RIPO). J Virol. 2011;85(14):7225–7235. doi:10.1128/JVI.01804-0921561914
  • Gromeier M, Alexander L, Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A. 1996;93(6):2370–2375. doi:10.1073/pnas.93.6.23708637880
  • Desjardins A, Gromeier M, Herndon JE 2nd, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–161. doi:10.1056/NEJMoa171643529943666
  • Filley AC, Dey M. Immune system, friend or foe of oncolytic virotherapy? Front Oncol. 2017;7:106. doi:10.3389/fonc.2017.0010628589085
  • Nemunaitis J, Cunningham C, Tong AW, et al. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther. 2003;10:341. doi:10.1038/sj.cgt.770058512719704
  • Parato KA, Senger D, Forsyth PAJ, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005;5:965. doi:10.1038/nrc175016294217
  • Thorne SH, Negrin RS, Contag CH. Synergistic antitumor effects of immune cell-viral biotherapy. Science. 2006;311(5768):1780. doi:10.1126/science.112141116556847
  • Chen Y, Yu D-C, Charlton D, Henderson DR. Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy. Hum Gene Ther. 2000;11(11):1553–1567. doi:10.1089/1043034005008328910945769
  • White CL, Twigger KR, Vidal L, et al. Characterization of the adaptive and innate immune response to intravenous oncolytic reovirus (dearing type 3) during a phase I clinical trial. Gene Ther. 2008;15:911. doi:10.1038/gt.2008.2118323793
  • Rudin CM, Poirier JT, Senzer NN, et al. Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res. 2011;17(4):888–895. doi:10.1158/1078-0432.CCR-10-170621304001
  • Tsai V, Johnson DE, Rahman A, et al. Impact of Human neutralizing antibodies on antitumor efficacy of an oncolytic adenovirus in a murine model. Clin Cancer Res. 2004;10(21):7199. doi:10.1158/1078-0432.CCR-04-076515534093
  • Sumida SM, Truitt DM, Lemckert AAC, et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol. 2005;174(11):7179. doi:10.4049/jimmunol.174.11.717915905562
  • Ferguson MS, Lemoine NR, Wang Y. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol. 2012;2012:1–14. doi:10.1155/2012/805629
  • Davies DH, McCausland MM, Valdez C, et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol. 2005;79(18):11724–11733. doi:10.1128/JVI.79.18.11724-11733.200516140750
  • Dietrich MH, Ogden KM, Katen SP, et al. Structural insights into reovirus σ1 interactions with two neutralizing antibodies. J Virol. 2017;91(4):e01621–e01616. doi:10.1128/JVI.01621-1627928010
  • Ong HT, Hasegawa K, Dietz AB, Russell SJ, Peng KW. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther. 2006;14:324. doi:10.1038/sj.gt.330288017051248
  • Dingli D, Peng K-W, Harvey ME, et al. Interaction of measles virus vectors with auger electron emitting radioisotopes. Biochem Biophys Res Commun. 2005;337(1):22–29. doi:10.1016/j.bbrc.2005.08.26116171777
  • Chakradhar S. Viral vanguard: designing cancer-killing viruses to chase metastatic tumors. Nat Med. 2017;23(6):652–655. doi:10.1038/nm0617-65228586331
  • Russell SJ, Peng K-W, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30:658. doi:10.1038/nbt.228722781695
  • Wong HH, Lemoine NR, Wang Y. Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses. 2010;2(1):78–106. doi:10.3390/v201007820543907
  • Sun JY, Anand-Jawa V, Chatterjee S, Wong KK. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther. 2003;10(11):964–976. doi:10.1038/sj.gt.330203912756417
  • Lang SI, Giese NA, Rommelaere J, Dinsart C, Cornelis JJ. Humoral immune responses against minute virus of mice vectors. J Gene Med. 2006;8(9):1141–1150. doi:10.1002/(ISSN)1521-225416800041
  • Tesfay MZ, Kirk AC, Hadac EM, et al. PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J Virol. 2013;87(7):3752. doi:10.1128/JVI.02832-1223325695
  • Tesfay MZ, Ammayappan A, Federspiel MJ, et al. Vesiculovirus neutralization by natural IgM and complement. J Virol. 2014;88(11):6148. doi:10.1128/JVI.00074-1424648451
  • Hutzler S, Erbar S, Jabulowsky RA, et al. Antigen-specific oncolytic MV-based tumor vaccines through presentation of selected tumor-associated antigens on infected cells or virus-like particles. Sci Rep. 2017;7(1):16892. doi:10.1038/s41598-017-16928-829203786
  • Ricca JM, Oseledchyk A, Walther T, et al. Pre-existing immunity to oncolytic virus potentiates its immunotherapeutic efficacy. Mol Ther. 2018;26(4):1008–1019. doi:10.1016/j.ymthe.2018.01.01929478729
  • Power AT, Wang J, Falls TJ, et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther. 2007;15(1):123–130. doi:10.1038/sj.mt.630003917164783
  • Ilett EJ, Bárcena M, Errington-Mais F, et al. Internalization of oncolytic reovirus by human dendritic cell carriers protects the virus from neutralization. Clin Cancer Res. 2011;17(9):2767. doi:10.1158/1078-0432.CCR-10-326621389099
  • Ilett EJ, Prestwich RJ, Kottke T, et al. Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity. Gene Ther. 2009;16:689. doi:10.1038/gt.2009.2919282847
  • Berkeley RA, Steele LP, Mulder AA, et al. Antibody-neutralized reovirus is effective in oncolytic virotherapy. Cancer Immunol Res. 2018;6(10):1161. doi:10.1158/2326-6066.CIR-18-030930209061
  • Hammer K, Kazcorowski A, Liu L, et al. Engineered adenoviruses combine enhanced oncolysis with improved virus production by mesenchymal stromal carrier cells. Int J Cancer. 2015;137(4):978–990. doi:10.1002/ijc.v137.425604186
  • Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel DT. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells. 2003;21(4):389–404. doi:10.1634/stemcells.21-4-38912832693
  • Shikano T, Kasuya H, Sahin TT, et al. High therapeutic potential for systemic delivery of a liposome-conjugated herpes simplex virus. Curr Cancer Drug Targets. 2011;11(1):111–122. doi:10.2174/15680091179374367321062239
  • Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X. Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials. 2013;34(12):3020–3030. doi:10.1016/j.biomaterials.2012.12.05123360783
  • Wang Y, Huang H, Zou H, et al. Liposome encapsulation of oncolytic virus M1 to reduce immunogenicity and immune clearance in vivo. Mol Pharm. 2019;16(2):779–785. doi:10.1021/acs.molpharmaceut.8b0104630604617
  • Yotnda P, Davis AR, Hicks MJ, Templeton NS, Benner MK. Liposomal enhancement of the antitumor activity of conditionally replication-competent adenoviral plasmids. Mol Ther. 2004;9(4):489–495. doi:10.1016/j.ymthe.2004.01.01815093179
  • Qiao J, Wang H, Kottke T, et al. Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus. Clin Cancer Res. 2008;14(1):259. doi:10.1158/1078-0432.CCR-07-151018172278
  • ClinicalTrials.gov. Cyclophosphamide, oncolytic virus. Cancer. 2019.
  • Fontanellas A, Hervás-Stubbs S, Mauleón I, et al. Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates. Mol Ther. 2010;18(4):754–765. doi:10.1038/mt.2009.31220087317
  • Muharemagic D, Zamay A, Ghobadloo SM, et al. Aptamer-facilitated protection of oncolytic virus from neutralizing antibodies. Mole Ther Nucleic Acids. 2014;3(6):e167–e167. doi:10.1038/mtna.2014.19
  • Niemann J, Woller N, Brooks J, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10(1):3236. doi:10.1038/s41467-019-11137-531324774
  • Xu C, Goß AV, Dorneburg C, Debatin K-M, Wei J, Beltinger C. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies. Oncolytic Virother. 2018. doi:10.2147/OV.S150637
  • Zhang Z, Krimmel J, Zhang Z, Hu Z, Seth P. Systemic delivery of a novel liver-detargeted oncolytic adenovirus causes reduced liver toxicity but maintains the antitumor response in a breast cancer bone metastasis model. Hum Gene Ther. 2011;22(9):1137–1142. doi:10.1089/hum.2011.00321480822
  • Ichihashi Y. Extracellular enveloped vaccinia virus escapes neutralization. Virology. 1996;217(2):478–485. doi:10.1006/viro.1996.01428610439
  • Kirn DH, Wang Y, Liang W, Contag CH, Thorne SH. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res. 2008;68(7):2071. doi:10.1158/0008-5472.CAN-07-651518381410
  • Lech PJ, Tobin GJ, Bushnell R, et al. Epitope dampening monotypic measles virus hemagglutinin glycoprotein results in resistance to cocktail of monoclonal antibodies. PLoS One. 2013;8(1):e52306. doi:10.1371/journal.pone.005230623300970
  • Iankov ID, Blechacz B, Liu C, et al. Infected Cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther. 2007;15(1):114–122. doi:10.1038/sj.mt.630002017164782
  • Aoyama K, Kuroda S, Morihiro T, et al. Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Sci Rep. 2017;7(1):14177. doi:10.1038/s41598-017-14717-x29074882