275
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

The Influence of Cytochrome P450 Polymorphisms on Pharmacokinetic Profiles and Treatment Outcomes Among Malaria Patients in Sub-Saharan Africa: A Systematic Review

ORCID Icon, ORCID Icon, &
Pages 449-461 | Received 16 Jul 2022, Accepted 24 Apr 2023, Published online: 18 May 2023

References

  • Obua C, Hellgren U, Ntale M, et al. Population pharmacokinetics of chloroquine and sulfadoxine and treatment response in children with malaria: suggestions for an improved dose regimen. Br J Clin Pharmacol. 2008;65(4):493–501. doi:10.1111/j.1365-2125.2007.03050.x
  • Pang KS. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metabol Disposit. 2003;31(12):1507–1519. doi:10.1124/dmd.31.12.1507
  • Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet. 2008;9:403–433. doi:10.1146/annurev.genom.9.081307.164258
  • Dandara C, Swart M, Mpeta B, Wonkam A, Masimirembwa C. Cytochrome P450 pharmacogenetics in African populations: implications for public health. Expert Opin Drug Metab Toxicol. 2014;10(6):769–785. doi:10.1517/17425255.2014.894020
  • Mpye K, Matimba A, Dzobo K, Chirikure S, Wonkam A, Dandara C. Disease burden and the role of pharmacogenomics in African populations. Global Health Epidemiol Genom. 2017;2. doi:10.1017/gheg.2016.21
  • Motulsky AG. Drug reactions, enzymes, and biochemical genetics. J Am Med Assoc. 1957;165(7):835–837. doi:10.1001/jama.1957.72980250010016
  • Dandara C, Masimirembwa C, Haffani YZ, et al. African Pharmacogenomics Consortium: consolidating pharmacogenomics knowledge, capacity development and translation in Africa: consolidating pharmacogenomics knowledge, capacity development and translation in Africa. AAS Open Res. 2019;2:19. doi:10.12688/aasopenres.12965.1
  • Dandara C, Matimba A. A Glimpse into Pharmacogenomics in Africa. Cambridge, UK: Cambridge University Press; 2019.
  • Tata BE, Ambele M, Pepper M. Barriers to implementing clinical pharmacogenetics testing in Sub-Saharan Africa. A critical review. Pharmaceutics. 2020;12(9):809. doi:10.3390/pharmaceutics12090809
  • Ley B, Luter N, Espino FE, et al. The challenges of introducing routine G6PD testing into radical cure: a workshop report. BioMed Central. 2015. doi:10.1186/s12936-015-0896-8
  • Staehli Hodel EM, Csajka C, Ariey F, et al. Effect of single nucleotide polymorphisms in cytochrome P450 isoenzyme and N-acetyltransferase 2 genes on the metabolism of artemisinin-based combination therapies in malaria patients from Cambodia and Tanzania. Antimicrob Agents Chemother. 2013;57(2):950–958. doi:10.1128/AAC.01700-12
  • Keshava C, McCanlies EC, Weston A. CYP3A4 polymorphisms—potential risk factors for breast and prostate cancer: a HuGE review. Am J Epidemiol. 2004;160(9):825–841. doi:10.1093/aje/kwh294
  • Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev. 2010;9(4):457–474. doi:10.1016/j.arr.2010.06.001
  • Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol. 1998;38:389–430. doi:10.1146/annurev.pharmtox.38.1.389
  • Feltrin C, Farias IV, Sandjo LP, Reginatto FH, Simões C. Effects of standardized medicinal plant extracts on drug metabolism mediated by CYP3A4 and CYP2D6 enzymes. Chem Res Toxicol. 2020;33(9):2408–2419. doi:10.1021/acs.chemrestox.0c00182
  • Alessandrini M, Asfaha S, Dodgen TM, Warnich L, Pepper MS. Cytochrome P450 pharmacogenetics in African populations. Drug Metab Rev. 2013;45(2):253–275. doi:10.3109/03602532.2013.783062
  • El-Shair S, Al Shhab M, Zayed K, Alsmady M, Zihlif M. Association between CYP3A4 and CYP3A5 genotypes and cyclosporine’s blood levels and doses among Jordanian kidney transplanted patients. Curr Drug Metab. 2019;20(8):682–694. doi:10.2174/1389200220666190806141825
  • Piedade R, Gil JP. The pharmacogenetics of antimalaria artemisinin combination therapy. Expert Opin Drug Metab Toxicol. 2011;7(10):1185–1200. doi:10.1517/17425255.2011.608660
  • Eng H-S, Mohamed Z, Calne R, et al. The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients. Kidney Int. 2006;69(10):1858–1864. doi:10.1038/sj.ki.5000325
  • Tang H-L, Ma -L-L, Xie H-G, Zhang T, Hu Y-F. Effects of the CYP3A5* 3 variant on cyclosporine exposure and acute rejection rate in renal transplant patients: a meta-analysis. Pharmacogenet Genomics. 2010;20(9):525–531. doi:10.1097/FPC.0b013e32833ccd56
  • Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet. 2006;45(1):13–31. doi:10.2165/00003088-200645010-00002
  • Saiz-Rodríguez M, Almenara S, Navares-Gómez M, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines. 2020;8(4):94. doi:10.3390/biomedicines8040094
  • Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics. 2009;10(9):1489–1510. doi:10.2217/pgs.09.82
  • Cavaco I, Piedade R, Msellem MI, Bjorkman A, Gil JP. Cytochrome 1A1 and 1B1 gene diversity in the Zanzibar islands. Trop Med Int Health. 2012;17(7):854–857.
  • Johansson T, Jurva U, Gronberg G, Weidolf L, Masimirembwa C. Novel metabolites of amodiaquine formed by CYP1A1 and CYP1B1: structure elucidation using electrochemistry, mass spectrometry, and NMR. Drug Metab Dispos. 2009;37(3):571–579. doi:10.1124/dmd.108.025171
  • Phompradit P, Muhamad P, Cheoymang A, Na-Bangchang K. Preliminary investigation of the contribution of CYP2A6, CYP2B6, and UGT1A9 polymorphisms on artesunate-mefloquine treatment response in Burmese patients with Plasmodium falciparum malaria. Am J Trop Med Hyg. 2014;91(2):361. doi:10.4269/ajtmh.13-0531
  • Yusof W, Hua GS. Gene, ethnic and gender influences predisposition of adverse drug reactions to artesunate among Malaysians. Toxicol Mech Methods. 2012;22(3):184–192. doi:10.3109/15376516.2011.623331
  • Kerb R, Fux R, Mörike K, et al. Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis. 2009;9(12):760–774. doi:10.1016/S1473-3099(09)70320-2
  • Parikh S, Ouedraogo JB, Goldstein J, Rosenthal P, Kroetz D. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther. 2007;82(2):197–203. doi:10.1038/sj.clpt.6100122
  • Tornio A, Backman JT. Cytochrome P450 in pharmacogenetics: an update. Adv Pharmacol. 2018;83:3–32.
  • Hoffman SMG, Nelson DR, Keeney DS. Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19. Pharmacogenet Genomics. 2001;11(8):687–698. doi:10.1097/00008571-200111000-00007
  • Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann M, Schwab M. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics. 2007;8(7):743–759. doi:10.2217/14622416.8.7.743
  • Liu H, Xie Y, Cai T, Xing J. No effect of PXR (8055C> T) polymorphism on the pharmacokinetic profiles of piperaquine in healthy Chinese subjects. Curr Drug Metab. 2021;23(2):164–170.
  • Gim J-A, Kwon Y, Lee HA, et al. A machine learning-based identification of genes affecting the pharmacokinetics of tacrolimus using the DMETTM plus platform. Int J Mol Sci. 2020;21(7):2517. doi:10.3390/ijms21072517
  • Cavaco IdCL. Molecular determinants of the response to malaria therapeutics; 2007.
  • Gil JP. The pharmacogenetics of the antimalarial amodiaquine: citeseer; 2012.
  • Jin J, Lin F, Liao S, Bao Q, Ni L, Wei Q-Y. Effects of SNPs (CYP1B1* 2 G355T, CYP1B1* 3 C4326G, and CYP2E1* 5 G-1293C), smoking, and drinking on susceptibility to laryngeal cancer among Han Chinese. PLoS One. 2014;9(10):e106580. doi:10.1371/journal.pone.0106580
  • Mwenifumbo JC, Lessov‐Schlaggar CN, Zhou Q, et al. Identification of novel CYP2A6* 1B variants: the CYP2A6* 1B allele is associated with faster in vivo nicotine metabolism. Clin Pharmacol Ther. 2008;83(1):115–121. doi:10.1038/sj.clpt.6100246
  • Ezzeldin N, El-Lebedy D, Darwish A, et al. Association of genetic polymorphisms CYP2A6* 2 rs1801272 and CYP2A6* 9 rs28399433 with tobacco-induced lung Cancer: case-control study in an Egyptian population. BMC Cancer. 2018;18(1):1–9. doi:10.1186/s12885-018-4342-5
  • Marwa KJ, Schmidt T, Sjögren M, Minzi OM, Kamugisha E, Swedberg G. Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population: a concern about the metabolism of artemisinin-based combinations. Malar J. 2014;13(1):1–7. doi:10.1186/1475-2875-13-420
  • Ferreira PE, Veiga MI, Cavaco I, et al. Polymorphism of antimalaria drug metabolizing, nuclear receptor, and drug transport genes among malaria patients in Zanzibar, East Africa. Ther Drug Monit. 2008;30(1):10–15. doi:10.1097/FTD.0b013e31815e93c6
  • Roederer MW, McLeod H, Juliano JJ. Can pharmacogenomics improve malaria drug policy? Bull World Health Organ. 2011;89:838–845. doi:10.2471/BLT.11.087320
  • Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi:10.1186/2046-4053-4-1
  • Health NIo. National Heart Lung, and Blood Institute. Study Quality Assessment Tools. Bethesda, MD, USA: National Institutes of Health; 2018.
  • Pernaute-Lau L, Morris U, Msellem M, Mårtensson A, Björkman A, Gil JP. Influence of cytochrome P450 (CYP) 2C8 polymorphisms on the efficacy and tolerability of artesunate‐amodiaquine treatment of uncomplicated Plasmodium falciparum malaria in Zanzibar. Malar J. 2021;20(1):1–7. doi:10.1186/s12936-021-03620-6
  • Hodoameda P. Determination of Plasmodium Falciparum and Host Genetic Factors That Affect the Efficacy of the Artemisinin-Based Combination Partner Drugs Used in Ghana. University Of Ghana; 2019.
  • Hodoameda P, Duah-Quashie NO, Hagan CO, et al. Plasmodium falciparum genetic factors rather than host factors are likely to drive resistance to ACT in Ghana. Malar J. 2020;19(1):1–8. doi:10.1186/s12936-020-03320-7
  • Kiaco K, Rodrigues AS, Do Rosário V, Gil JP, Lopes D. The drug transporter ABCB1 c. 3435C> T SNP influences artemether–lumefantrine treatment outcome. Malar J. 2017;16(1):1–6. doi:10.1186/s12936-017-2006-6
  • Mutagonda RF, Kamuhabwa AA, Minzi O, et al. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malar J. 2017;16(1):1–10. doi:10.1186/s12936-017-1914-9
  • Adjei GO, Kristensen K, Goka BQ, et al. Effect of concomitant artesunate administration and cytochrome P4502C8 polymorphisms on the pharmacokinetics of amodiaquine in Ghanaian children with uncomplicated malaria. Antimicrob Agents Chemother. 2008;52(12):4400–4406. doi:10.1128/AAC.00673-07
  • Somé FA, Bazié T, Ehrlich HY, et al. Investigating selected host and parasite factors potentially impacting upon seasonal malaria chemoprevention in Bama, Burkina Faso. Malar J. 2020;19(1):1–8. doi:10.1186/s12936-020-03311-8
  • Mballa R, Chedjou J, Ngwafor R. Single nucleotide polymorphisms in the cyp2C8 and nat2 genes and treatment outcomes in patients suffering from uncomplicated malaria in Garoua, Northern Region of Cameroon. Pharm Pharmacol Int J. 2019;7(4):147–153.
  • Habtemikael L, Russom M, Bahta I, et al. Prevalence of CYP2C8* 2 and* 3 among Eritreans and its potential impact on artesunate/amodiaquine treatment. Pharmgenomics Pers Med. 2020;13:571. doi:10.2147/PGPM.S276215
  • Maganda B, Minzi O, Ngaimisi E, Kamuhabwa A, Aklillu E. CYP2B6* 6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients. Pharmacogenomics J. 2016;16(1):88–95. doi:10.1038/tpj.2015.37
  • Janha RE, Sisay-Joof F, Hamid-Adiamoh M, et al. Effects of genetic variation at the CYP2C19/CYP2C9 locus on pharmacokinetics of chlorcycloguanil in adult Gambians. Pharmacogenomics. 2009;10(9):1423–1431. doi:10.2217/pgs.09.72
  • Kilonzi M, Minzi O, Mutagonda R, et al. Usefulness of day 7 lumefantrine plasma concentration as a predictor of malaria treatment outcome in under-fives children treated with artemether-lumefantrine in Tanzania. Malar J. 2020;19(1):1–8. doi:10.1186/s12936-020-3150-y
  • Bell DJ, Wootton D, Mukaka M, et al. Measurement of adherence, drug concentrations and the effectiveness of artemether-lumefantrine, chlorproguanil-dapsone or sulphadoxine-pyrimethamine in the treatment of uncomplicated malaria in Malawi. Malar J. 2009;8(1):1–11. doi:10.1186/1475-2875-8-204
  • Marwa KJ, Liwa AC, Konje ET, Mwita S, Kamugisha E, Swedberg G. Lumefantrine plasma concentrations in uncontrolled conditions among patients treated with artemether-lumefantrine for uncomplicated plasmodium falciparum malaria in Mwanza, Tanzania. Int J Infect Dis. 2022;123:192–199. doi:10.1016/j.ijid.2022.08.020
  • Checchi F, Piola P, Fogg C, et al. Supervised versus unsupervised antimalarial treatment with six-dose artemether-lumefantrine: pharmacokinetic and dosage-related findings from a clinical trial in Uganda. Malar J. 2006;5(1):1–8. doi:10.1186/1475-2875-5-59
  • Ippolito MM, Pringle JC, Siame M, et al. Therapeutic Efficacy of artemether–lumefantrine for uncomplicated falciparum malaria in Northern Zambia. Am J Trop Med Hyg. 2020;103(6):2224. doi:10.4269/ajtmh.20-0852