238
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Current Understanding of Inherited Modifiers of FVIII Pharmacokinetic Variation

&
Pages 239-252 | Received 20 Dec 2022, Accepted 06 Mar 2023, Published online: 24 Mar 2023

References

  • White G, Rosendaal F, Aledort LM, et al. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 2001;85(3):560. doi:10.1055/s-0037-1615621
  • Gualtierotti R, Solimeno LP, Peyvandi F. Hemophilic arthropathy: current knowledge and future perspectives. J Thromb Haemost. 2021;19(9):2112–2121. doi:10.1111/jth.15444
  • Mannucci PM, Tuddenham EGD. The hemophilias — from royal genes to gene therapy. N Engl J Med. 2001;344(23):1773–1779. doi:10.1056/NEJM200106073442307
  • Cygan PH, Kouides PA. Regulation and importance of factor VIII levels in hemophilia A carriers. Curr Opin Hematol. 2021;28(5):315–322. doi:10.1097/MOH.0000000000000667
  • Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357(6):535–579. doi:10.1056/NEJMoa067659
  • Klamroth R, Windyga J, Radulescu V, et al. Rurioctocog alfa pegol PK-guided prophylaxis in hemophilia A: results from the Phase 3 PROPEL study. Blood. 2021;137(13):1818–1827. doi:10.1182/blood.2020005673
  • den Uijl IEM, Fischer K, van der Bom JG, Grobbee DE, Rosendaal FR, Plug I. Analysis of low frequency bleeding data: the association of joint bleeds according to baseline FVIII activity levels. Haemophilia. 2011;17(1):41–44. doi:10.1111/j.1365-2516.2010.02383.x
  • Ogiwara K, Swystun LL, Paine AS, et al. Factor VIII pharmacokinetics associates with genetic modifiers of VWF and FVIII clearance in an adult hemophilia A population. J Thromb Haemost. 2021;19(3):654–663. doi:10.1111/jth.15183
  • Swystun LL, Ogiwara K, Rawley O, et al. Genetic determinants of VWF clearance and FVIII binding modify FVIII pharmacokinetics in pediatric hemophilia A patients. Blood. 2019;134(11):880–891. doi:10.1182/blood.2019000190
  • Björkman S, Folkesson A, Berntorp E. In vivo recovery of factor VIII and factor IX: intra- and interindividual variance in a clinical setting. Haemophilia. 2007;13(1):2–8. doi:10.1111/j.1365-2516.2006.01401.x
  • Collins PW, Björkman S, Fischer K, et al. Factor VIII requirement to maintain a target plasma level in the prophylactic treatment of severe hemophilia A: influences of variance in pharmacokinetics and treatment regimens. J Thromb Haemost. 2010;8(2):269–275. doi:10.1111/j.1538-7836.2009.03703.x
  • Fischer K, Pendu R, van Schooten CJ, et al. Models for prediction of factor VIII half-life in severe haemophiliacs: distinct approaches for blood group O and non-O patients. PLoS One. 2009;4(8):e6745–e6751. doi:10.1371/journal.pone.0006745
  • Hazendonk HCAM, van Moort I, Mathôt RAA, et al. Setting the stage for individualized therapy in hemophilia: what role can pharmacokinetics play? Blood Rev. 2018;32(4):265–271. doi:10.1016/j.blre.2018.01.001
  • Björkman S, Blanchette VS, Fischer K, et al. Comparative pharmacokinetics of plasma- and albumin-free recombinant factor VIII in children and adults: the influence of blood sampling schedule on observed age-related differences and implications for dose tailoring. J Thromb Haemost. 2010;8(4):730–736. doi:10.1111/j.1538-7836.2010.03757.x
  • Fijnvandraat K, Peters M, Ten CJW. Inter‐individual variation in half‐life of infused recombinant factor VIII is related to pre‐infusion von Willebrand factor antigen levels. Br J Haematol. 1995;91(2):474–476. doi:10.1111/j.1365-2141.1995.tb05325.x
  • Shah A, Delesen H, Garger S, Lalezari S. Pharmacokinetic properties of BAY 81-8973, a full-length recombinant factor VIII. Haemophilia. 2015;21(6):766–771. doi:10.1111/hae.12691
  • Chen ZP, Li PJ, Li G, et al. Pharmacokinetic studies of factor VIII in Chinese boys with severe Hemophilia A: a single-center study. Chin Med J. 2018;131(15):1780–1785. doi:10.4103/0366-6999.233604
  • de Lange M, Snieder H, Ariëns RAS, Spector TD, Grant PJ. The genetics of haemostasis: a twin study. Lancet. 2001;357(9250):101–105. doi:10.1016/S0140-6736(00)03541-8
  • Orstavik KH, Magnus P, Reisner IH, Berg K, Graham JB, Nance W. Factor VIII and factor IX in a twin population. Evidence for a major effect of ABO locus on factor VIII level. Am J Hum Genet. 1985;37:89–101.
  • Henrard S, Speybroeck N, Hermans C. Body weight and fat mass index as strong predictors of factor VIII in vivo recovery in adults with hemophilia A. J Thromb Haemost. 2011;9(9):1784–1790. doi:10.1111/j.1538-7836.2011.04431.x
  • Björkman S, Oh MS, Spotts G, et al. Population pharmacokinetics of recombinant factor VIII: the relationships of pharmacokinetics to age and body weight. Blood. 2012;119(2):612–618. doi:10.1182/blood-2011-07-360594
  • Versloot O, Iserman E, Chelle P, et al. Terminal half-life of FVIII and FIX according to age, blood group and concentrate type: data from the WAPPS database. J Thromb Haemost. 2021;19(8):1896–1906. doi:10.1111/jth.15395
  • Cormier M, Batty P, Tarrant J, Lillicrap D. Advances in knowledge of inhibitor formation in severe haemophilia A. Br J Haematol. 2020;189(1):39–53. doi:10.1111/bjh.16377
  • Hofbauer CJ, Kepa S, Schemper M, et al. FVIII-binding IgG modulates FVIII half-life in patients with severe and moderate hemophilia A without inhibitors. Blood. 2016;128(2):293–296. doi:10.1182/blood-2015-10-675512
  • Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood. 2016;128(16):2007–2016. doi:10.1182/blood-2016-04-713289
  • Song J, Chen F, Campos M, et al. Quantitative influence of ABO blood groups on factor VIII and its ratio to von Willebrand factor, novel observations from an ARIC study of 11,673 subjects. PLoS One. 2015;10(8):1–11.
  • Kepa S, Horvath B, Reitter-Pfoertner S, et al. Parameters influencing FVIII pharmacokinetics in patients with severe and moderate haemophilia A. Haemophilia. 2015;21(3):343–350. doi:10.1111/hae.12592
  • Vlot AJ, Mauser-Bunschoten EP, Zarkova AG, et al. The half-life of infused factor VIII is shorter in hemophiliac patients with blood group O than in those with blood group A. Thromb Haem. 2000;83(1):65–69. doi:10.1055/s-0037-1613759
  • van Dijk K, van der Bom J, Lenting P, et al. Factor VIII half-life and clinical phenotype of severe hemophilia A. Haematologica. 2005;90(4):494–498.
  • Garcia-Martínez I, Borràs N, Martorell M, et al. Common genetic variants in ABO and CLEC4M modulate the pharmacokinetics of recombinant FVIII in severe hemophilia A patients. Thromb Haemost. 2020;120(10):1395–1406. doi:10.1055/s-0040-1714214
  • Swystun LL, Lillicrap D. Genetic regulation of plasma von Willebrand factor levels in health and disease. J Thromb Haemost. 2018;16(12):2375–2390. doi:10.1111/jth.14304
  • Deitcher S, Tuller J, Johnson J. Intranasal DDAVP induced increases in plasma von Willebrand factor alter the pharmacokinetics of high-purity factor VIII concentrates in severe haemophilia A patients. Haemophilia. 1999;5(2):88–95.
  • Desch KC, Ozel AB, Siemieniak D, et al. Linkage analysis identifies a locus for plasma von Willebrand factor undetected by genome-wide association. Proc Natl Acad Sci U S A. 2013;110(2):588–593. doi:10.1073/pnas.1219885110
  • Bladbjerg EM, de Maat MPM, Christensen K, Bathum L, Jespersen J, Hjelmborg J. Genetic influence on thrombotic risk markers in the elderly - A Danish twin study. J Thromb Haemost. 2006;4(3):599–607. doi:10.1111/j.1538-7836.2005.01778.x
  • Souto JC, Almasy L, Soria JM, et al. Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thromb Haem. 2003;89(3):468–474. doi:10.1055/s-0037-1613375
  • Wang QY, Song J, Gibbs RA, Boerwinkle E, Dong JF, Yu FL. Characterizing polymorphisms and allelic diversity of von Willebrand factor gene in the 1000 Genomes. J Thromb Haemost. 2013;11(2):261–269. doi:10.1111/jth.12093
  • Huffman JE, de Vries PS, Morrison AC, et al. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and VWF. Blood. 2015;31(18):e19–e29. doi:10.1182/blood-2015-02-624551
  • Smith NL, Chen MH, Dehghan A, et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation. 2010;121(12):1382–1392. doi:10.1161/CIRCULATIONAHA.109.869156
  • Sabater-Lleal M, Huffman JE, de Vries PS, et al. Genome-wide association transethnic meta-analyses identifies novel associations regulating coagulation factor VIII and Von Willebrand factor plasma levels. Circulation. 2019;139(5):620–635. doi:10.1161/CIRCULATIONAHA.118.034532
  • Mufti AH, Ogiwara K, Swystun LL, et al. The common VWF single nucleotide variants c.2365A.G and c.2385T.C modify VWF biosynthesis and clearance. Blood Adv. 2018;2(13):1585–1594. doi:10.1182/bloodadvances.2017011643
  • Lenting P, van Schooten C, Denis C. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost. 2007;5(7):1353–1360. doi:10.1111/j.1538-7836.2007.02572.x
  • Mazurier C, Gaucher C, Jorieux S, Goudemand M. Biological effect of desmopressin in eight patients with type 2N (‘Normandy’) von Willebrand disease. Br J Haematol. 1994;88(4):849–854. doi:10.1111/j.1365-2141.1994.tb05127.x
  • Tuddenham EGD, Lane RS, Rotblat F, et al. Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand’s disease. Br J Haematol. 1982;52(2):259–267. doi:10.1111/j.1365-2141.1982.tb03888.x
  • Lenting P, Christophe O, Denis C. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(13):2019–2028. doi:10.1182/blood-2014-06-528406
  • Ward SE, O’Sullivan JM, O’Donnell JS. The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood. 2020;136(25):2864–2874. doi:10.1182/blood.2020005843
  • Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ, Montgomery RA. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood. 1987;69(6):1691–1695. doi:10.1182/blood.V69.6.1691.1691
  • Gallinaro L, Cattini MG, Sztukowska M, et al. A shorter von Willebrand factor survival in O blood group subjects explains how ABO determinants influence plasma von Willebrand factor. Blood. 2008;111(7):3540–3545. doi:10.1182/blood-2007-11-122945
  • O’Donnell J, Laffan MA. The relationship between ABO histo-blood group, factor VIII and von Willebrand factor. Transfus Med. 2001;11(4):343–351. doi:10.1046/j.1365-3148.2001.00315.x
  • Albánez S, Ogiwara K, Michels A, et al. Aging and ABO blood type influence von Willebrand factor and factor VIII levels through interrelated mechanisms. J Thromb Haemost. 2016;14(5):953–963. doi:10.1111/jth.13294
  • O’Donnell J, Boulton FE, Manning RA, Laffan MA. Amount of H antigen expressed on circulating von Willebrand factor is modified by ABO blood group genotype and is a major determinant of plasma von Willebrand factor antigen levels. Arterioscler Thromb Vasc Biol. 2002;22(2):335–341. doi:10.1161/hq0202.103997
  • Swystun LL, Notley C, Georgescu I, et al. The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner. J Thromb Haemost. 2019;17(4):681–694. doi:10.1111/jth.14404
  • Noe DA. A Mathematical Model of Coagulation FVIII Kinetics. Haemostasis. 1996;26(6):289–303. doi:10.1159/000217222
  • van Schooten CJ, Shahbazi S, Groot E, et al. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood. 2008;112(5):1704–1712. doi:10.1182/blood-2008-01-133181
  • Navarrete A, Dasgupta S, Delignat S, et al. Splenic marginal zone antigen-presenting cells are critical for the primary allo-immune response to therapeutic factor VIII in hemophilia A. J Thromb Haemost. 2009;7(11):1816–1823. doi:10.1111/j.1538-7836.2009.03571.x
  • Wohner N, Muczynski V, Mohamadi A, et al. Macrophage scavenger receptor SR-A1 contributes to the clearance of von Willebrand factor. Haematologica. 2018;103(4):728–737. doi:10.3324/haematol.2017.175216
  • Rastegarlari G, Pegon JN, Casari C, et al. Macrophage LRP1 contributes to the clearance of von Willebrand factor. Blood. 2012;119(9):2126–2134. doi:10.1182/blood-2011-08-373605
  • Ward SE, O’Sullivan JM, Drakeford C, et al. A novel role for the macrophage galactose-type lectin receptor in mediating von Willebrand factor clearance. Blood. 2018;131(8):911–916. doi:10.1182/blood-2017-06-787853
  • Grewal PK, Uchiyama S, Ditto D, et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med. 2008;14(6):648–655. doi:10.1038/nm1760
  • Pegon JN, Kurdi M, Casari C, et al. Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica. 2012;97(12):1855–1863. doi:10.3324/haematol.2012.063297
  • Bovenschen N, Mertens K, Hu L, Havekes LM, van Vlijmen BJM. LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood. 2005;106(3):906–912. doi:10.1182/blood-2004-11-4230
  • Rydz N, Swystun LL, Notley C, et al. The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood. 2013;121(6):5228–5237. doi:10.1182/blood-2012-10-457507
  • Swystun LL, Ogiwara K, Lai JD, et al. The scavenger receptor SCARA5 is an endocytic receptor for von Willebrand factor expressed by littoral cells in the human spleen. J Thromb Haemost. 2019;17(8):1384–1396. doi:10.1111/jth.14521
  • Swystun LL, Lai JD, Notley C, et al. The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. J Clin Investig. 2018;128(9):4057–4073. doi:10.1172/JCI96400
  • Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med. 2008;86(8):861–874. doi:10.1007/s00109-008-0350-2
  • Lunghi B, Morfini M, Martinelli N, Linari S, Castaman G, Bernardi F. Clinical medicine combination of CLEC4M rs868875 G-carriership and ABO O genotypes may predict faster decay of FVIII infused in hemophilia A patients. J Clin Med. 2022;2022:733. doi:10.3390/jcm11030733
  • Falkowski M, Schledzewski K, Hansen B, Goerdt S. Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/ liquid interfaces. Histochem Cell Biol. 2003;120(5):361–369. doi:10.1007/s00418-003-0585-5
  • Politz O, Gratchev A, Mccourt PAG, et al. Stabilin-1 and-2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J. 2002;362:155–164. doi:10.1042/bj3620155
  • Desch KC, Ozel AB, Halvorsen M, et al. Whole-exome sequencing identifies rare variants in STAB2 associated with venous thromboembolic disease. Blood. 2020;136(5):533–541. doi:10.1182/blood.2019004161
  • Goldstein JL, Brown MS. The LDL Receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–438. doi:10.1161/ATVBAHA.108.179564
  • Martinelli N, Girelli D, Lunghi B, et al. Polymorphisms at LDLR locus may be associated with coronary artery disease through modulation of coagulation factor VIII activity and independently from lipid profile. Blood. 2010;116(25):5688–5697. doi:10.1182/blood-2010-03-277079
  • Lunghi B, Bernardi F, Martinelli N, et al. Functional polymorphisms in the LDLR and pharmacokinetics of Factor VIII concentrates. J Thromb Haemost. 2019;17(8):1288–1296. doi:10.1111/jth.14473
  • Grewal PK. The Ashwell-Morell receptor. Methods Enzymol. 2010;479(10):223–241.
  • Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJM, Mertens K. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost. 2005;3(6):1257–1265. doi:10.1111/j.1538-7836.2005.01389.x
  • Lunghi B, Morfini M, Martinelli N, et al. The asialoglycoprotein receptor minor subunit gene contributes to pharmacokinetics of factor VIII concentrates in hemophilia A. Thromb Haemost. 2022;122(05):715–725. doi:10.1055/a-1591-7869
  • Li H, Fang H, Chang L, et al. TC2N: a novel vital oncogene or tumor suppressor gene in cancers. Front Immunol. 2021;12(1):1–9.
  • Ye S, Karim ZA, Al HR, Pessin JE, Filipovich AH, Whiteheart SW. Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood. 2012;120(12):2484–2492. doi:10.1182/blood-2012-05-430603
  • Ye S, Huang Y, Joshi S, et al. Platelet secretion and hemostasis require syntaxin-binding protein STXBP5. J Clin Investig. 2014;124(10):4517–4528. doi:10.1172/JCI75572
  • Zhu Q, Yamakuchi M, Ture S, et al. Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and promotes platelet secretion. J Clin Investig. 2014;124(10):4503–4516. doi:10.1172/JCI71245
  • Pelland-Marcotte MC, Carcao MD. Hemophilia in a Changing Treatment Landscape. Hematol Oncol Clin North Am. 2019;33(3):409–423. doi:10.1016/j.hoc.2019.01.007
  • Peters RT, Toby G, Lu Q, et al. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J Thromb Haemost. 2013;11(1):132–141. doi:10.1111/jth.12076
  • Mei B, Pan C, Jiang H, et al. Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood. 2010;116(2):270–279. doi:10.1182/blood-2009-11-254755
  • Carcao MD, Chelle P, Clarke E, et al. Comparative pharmacokinetics of two extended half-life FVIII concentrates (Eloctate and Adynovate) in adolescents with hemophilia A: is there a difference? J Thromb Haemost. 2019;17(7):1085–1096. doi:10.1111/jth.14469
  • Lalezari S, Martin Owitz U, Win Dyga J, et al. Correlation between endogenous VWF:Ag and PK parameters and bleeding frequency in severe haemophilia A subjects during three-times-weekly prophylaxis with rFVIII-FS. Haemophilia. 2014;20(1):e15–e22. doi:10.1111/hae.12294
  • Teitel J, Sholzberg M, Iorio A. Extended half-life factor VIII concentrates in adults with hemophilia A: comparative pharmacokinetics of two products. Res Pract Thromb Haemost. 2021;5(2):349–355. doi:10.1002/rth2.12476
  • Tagliaferri A, Matichecchia A, Rivolta GF, et al. Optimising prophylaxis outcomes and costs in haemophilia patients switching to recombinant FVIII-Fc: a single-centre real-world experience. Blood Transfus. 2020;18(5):374–385. doi:10.2450/2019.0220-19
  • Nummi V, Lehtinen AE, Iorio A, Szanto T, Lassila R. Switching from standard to extended half-life FVIII prophylaxis in haemophilia A: comparison of factor product use, bleed rates and pharmacokinetics. Haemophilia. 2022;28(6):e237–e244. doi:10.1111/hae.14649
  • Shah A, Coyle T, Lalezari S, et al. BAY 94-9027, a PEGylated recombinant factor VIII, exhibits a prolonged half-life and higher area under the curve in patients with severe haemophilia A: comprehensive pharmacokinetic assessment from clinical studies. Haemophilia. 2018;24(5):733–740. doi:10.1111/hae.13561
  • Shapiro AD, Ragni MV, Kulkarni R, et al. Recombinant factor VIII Fc fusion protein: extended-interval dosing maintains low bleeding rates and correlates with von Willebrand factor levels. J Thromb Haemost. 2014;12(11):1788–1800. doi:10.1111/jth.12723
  • Mahlangu J, Powell JS, Ragni MV, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A Key Points. Blood. 2014;123(3):317–325. doi:10.1182/blood-2013-10-529974
  • Konkle BA, Stasyshyn O, Chowdary P, et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood. 2015;126(9):1078–1085. doi:10.1182/blood-2015-03-630897
  • Konkle BA, Shapiro AD, Quon DV, et al. BIVV001 fusion protein as factor VIII replacement therapy for hemophilia A. N Engl J Med. 2020;383(11):1018–1027. doi:10.1056/NEJMoa2002699
  • Chhabra ES, Liu T, Kulman J, et al. BIVV001, a new class of factor VIII replacement for hemophilia A that is independent of von Willebrand factor in primates and mice. Blood. 2020;135(17):1484–1496. doi:10.1182/blood.2019001292