307
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Screening of Lymphoma Radiotherapy-Resistant Genes with CRISPR Activation Library

, , , , , , , & show all
Pages 67-80 | Received 07 Sep 2022, Accepted 05 Dec 2022, Published online: 30 Jan 2023

References

  • Maomao C, Wanqing C. Interpretation on the global cancer statistics of GLOBOCAN 2020. Chin J Front Med Sci. 2021;13(03):63–69. Chinese.
  • Hu YF, Huang YH, Luo W, Chen MX, Zhang J, Gou F. Clinical characteristics and analysis of prognostic factors of 222 patients diagnosed with Hodgkin’s lymphoma. Zhonghua Yi Xue Za Zhi. 2019;99(48):3792–3796. doi:10.3760/cma.j.issn.0376-2491.2019.48.007
  • Han Y, Qin Y, He X-H, et al. Clinical features and prognostic analysis of 370 cases of advanced diffuse large B-cell lymphoma. Chin J Oncol. 2018;40(06):456–461. Chinese. doi:10.3760/cma.j.issn.0253-3766.2018.06.011
  • Fuks Z, Kaplan HS. Recurrence rates following radiation therapy of nodular and diffuse malignant lymphomas. Radiology. 1973;108(3):675–684. doi:10.1148/108.3.675
  • Lee JY, Kim JH, Bang H, et al. EGR1 as a potential marker of prognosis in extranodal NK/T-cell lymphoma. Sci Rep. 2021;11(1):10342. doi:10.1038/s41598-021-89754-8
  • Troschel FM, Linsenmaier M, Borrmann K, Eich HT, Götte M, Greve B. Heparanase expression is associated with cancer stem cell features and radioresistance in Hodgkin’s lymphoma cells. Anticancer Res. 2021;41(7):3299–3308. doi:10.21873/anticanres.15117
  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. doi:10.1126/science.1231143
  • Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36(1):244–246. doi:10.1046/j.1365-2958.2000.01838.x
  • Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–1575. doi:10.1046/j.1365-2958.2002.02839.x
  • Perez-Pinera P, Kocak DD, Vockley CM, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10(10):973–976. doi:10.1038/nmeth.2600
  • Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nat Rev Cancer. 2022;22(5):259–279. doi:10.1038/s41568-022-00441-w
  • Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, et al. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett. 2022;27(1):49. doi:10.1186/s11658-022-00348-2
  • Liu D, Zhao X, Tang A, et al. CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188378. doi:10.1016/j.bbcan.2020.188378
  • Liu W, Liu J, Song Y, et al. Burden of lymphoma in China, 2006–2016: an analysis of the Global Burden of Disease Study 2016. J Hematol Oncol. 2019;12(1):115. doi:10.1186/s13045-019-0785-7
  • Kaiwen N, Xin Z, Xinting Z, et al. Research progress on the correlation between hypoxic microenvironment and radiotherapy resistance in head and neck squamous cell carcinoma. Chin J Otorhinolaryngol-Skull Base Surg. 2022;28(01):123–127. Chinese.
  • Nakayama F, Umeda S, Ichimiya T, et al. Sulfation of keratan sulfate proteoglycan reduces radiation-induced apoptosis in human Burkitt’s lymphoma cell lines. FEBS Lett. 2013;587(2):231–237. doi:10.1016/j.febslet.2012.12.002
  • Nowarski R, Wilner OI, Cheshin O, et al. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood. 2012;120(2):366–375. doi:10.1182/blood-2012-01-402123
  • Hai-Ling LIU, Xu-Jun W, Dan LI. Application of CRISPR/Cas9 high-throughput screening technology for identifying new target in tumor therapy. Chin J Biochem Mol Biol. 2016;32(02):133–139. Chinese.
  • Wang G, Ma M, Ye Y, et al. High-throughput functional screening using CRISPR/Cas9 system. Hereditas. 2016;38(05):391–401. Chinese. doi:10.16288/j.yczz.15-329
  • Cao J, Wei J, Yang P, et al. Genome-scale CRISPR-Cas9 knockout screening in gastrointestinal stromal tumor with Imatinib resistance. Mol Cancer. 2018;17(1):121. doi:10.1186/s12943-018-0865-2
  • Chun-sun J, Wei-ming X, Quan C. Mitochondrial fission, fusion and apoptosis. Acta Biophysica Sinica. 2007;4:256–264. Chinese.
  • Tonachini L, Monticone M, Puri C, et al. Chondrocyte protein with a poly-proline region (CHPPR) is a novel mitochondrial protein and promotes mitochondrial fission. J Cell Physiol. 2004;201(3):470–482. doi:10.1002/jcp.20126
  • Jia Y, Chen X, Zhao D, Ma S. SNHG1/miR-194-5p/MTFR1 axis promotes TGFβ1-induced EMT, migration and invasion of tongue squamous cell carcinoma cells. Mol Biotechnol. 2022;64(7):780–790. doi:10.1007/s12033-021-00445-1
  • Weiping F, Xinna D, Wenyan C, et al. Expression and prognostic significance of mitochondrial fission regulator 1 based on TCGA pan-cancer analysis. J Mod Oncol. 2020;28(04):648–651. Chinese.
  • Li Y, Liu Y, Jin K, et al. Negatively regulated by miR-29c-3p, MTFR1 promotes the progression and glycolysis in lung adenocarcinoma via the AMPK/mTOR signalling pathway. Front Cell Dev Biol. 2021;9:771824. doi:10.3389/fcell.2021.771824
  • Monticone M, Tonachini L, Tavella S, et al. Impaired expression of genes coding for reactive oxygen species scavenging enzymes in testes of Mtfr1/Chppr-deficient mice. Reproduction. 2007;134(3):483–492. doi:10.1530/REP-07-0199
  • Jia X, Li Q. Research advances on deubiquitinating enzymes involved in the development of hepatocellular carcinoma. Chin J Clin Oncol. 2020;47(05):260–264. Chinese.
  • Kee Y, Huang TT. Role of deubiquitinating enzymes in DNA repair. Mol Cell Biol. 2015;36(4):524–544. doi:10.1128/MCB.00847-15
  • Kwasna D, Abdul Rehman SA, Natarajan J, et al. Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell. 2018;70(1):150–164.e6. doi:10.1016/j.molcel.2018.02.023
  • Bao Y, Zhao TL, Zhang ZQ, et al. High eukaryotic translation elongation factor 1 alpha 1 expression promotes proliferation and predicts poor prognosis in clear cell renal cell carcinoma. Neoplasma. 2020;67(1):78–84. doi:10.4149/neo_2019_190224N158
  • Gong T, Shuang Y. Expression and clinical value of eukaryotic translation elongation factor 1A1 (EEF1A1) in diffuse large B cell lymphoma. Int J Gen Med. 2021;14:7247–7258. doi:10.2147/IJGM.S324645
  • Huang Y, Hu JD, Wu YA, et al. Effects of eEF1A1 re-expression on proliferation and apoptosis of Jurkat cells with knocked down eEF1A1 gene and its mechanisms. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21(2):279–284. doi:10.7534/j.issn.1009-2137.2013.02.004
  • Zhang Z, Zhao X, Wang D, et al. Targeted in vivo delivery of NF-κB decoy inhibitor augments sensitivity of B cell lymphoma to therapy. Mol Ther. 2021;29(3):1214–1225. doi:10.1016/j.ymthe.2020.11.026
  • Tchakarska G, Sola B. The double dealing of cyclin D1. Cell Cycle. 2020;19(2):163–178. doi:10.1080/15384101.2019.1706903
  • Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020;9(12):2648. doi:10.3390/cells9122648
  • Huang J. Overexpression of eEF1A1 regulates G1-phase progression to promote HCC proliferation through the STAT1-cyclin D1 pathway. Biochem Biophys Res Commun. 2017;494(3–4):542–549. Chinese. doi:10.1016/j.bbrc.2017.10.116