283
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Retrospective Analysis of Clinically Focused Exome Sequencing Results of 372 Infants with Suspected Monogenic Disorders in China

, , , , &
Pages 81-97 | Received 05 Sep 2022, Accepted 12 Jan 2023, Published online: 02 Feb 2023

References

  • Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013;14(10):681–691. PMID: 23999272. doi:10.1038/nrg3555
  • Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM), an Online catalog of human genes and genetic disorders. Nucleic Acids Res. 2014;43:1. doi:10.1093/nar/gku1303
  • Haijes HA, Molema F, Langeveld M, et al. Retrospective evaluation of the Dutch pre-newborn screening cohort for propionic acidemia and isolated methylmalonic acidemia: what to AIM, expect, and evaluate from newborn screening? J Inherit Metab Dis. 2020;43:3. doi:10.1002/jimd.12193
  • Farwell KD, Shahmirzadi L, El-Khechen D, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med. 2015;17(7):578–586. PMID: 25356970. doi:10.1038/gim.2014.154
  • Krumm N, Sudmant PH, Ko A, et al. Copy number variation detection and genotyping from exome sequence data. Genome Res. 2012;22(8):1525–1532. PMID: 22585873; PMCID: PMCPMC3409265. doi:10.1101/gr.138115.112
  • Retterer K, Juusola J, Cho MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696–704. PMID: 26633542. doi:10.1038/gim.2015.148
  • Rossi M, El-Khechen D, Black MH, Farwell Hagman KD, Tang S, Powis Z. Outcomes of diagnostic exome sequencing in patients with diagnosed or suspected autism spectrum disorders. Pediatr Neurol. 2017;70:34–43.e2. PMID: 28330790. doi:10.1016/j.pediatrneurol.2017.01.033
  • Tong F, Wang J, Xiao R, et al. application of next generation sequencing in the screening of monogenic diseases in China, 2021: a consensus among Chinese newborn screening experts. World J Pediatr. 2022;18(4):235–242. PMID: 35292922. doi:10.1007/s12519-022-00522-8
  • Taylor JC, Martin HC, Lise S, et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet. 2015;47(7):717–726. PMID: 25985138; PMCID: PMCPMC4601524. doi:10.1038/ng.3304
  • Lionel AC, Costain G, Monfared N, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20(4):435–443. doi:10.1038/gim.2017.119
  • Makrythanasis P, Nelis M, Santoni FA, et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum Mutat. 2014;35(10):1203–1210. PMID: 25044680. doi:10.1002/humu.22617.
  • Bureau A, Parker MM, Ruczinski I, et al. Whole exome sequencing of distant relatives in multiplex families implicates rare variants in candidate genes for oral clefts. Genetics. 2014;197(3):1039–1044. PMID: 24793288; PMCID: PMCPMC4096358. doi:10.1534/genetics.114.165225
  • Fahiminiya S, Almuriekhi M, Nawaz Z, et al. Whole exome sequencing unravels disease-causing genes in consanguineous families in Qatar. Clin Genet. 2014;86(2):134–141. PMID: 24102521. doi:10.1111/cge.12280
  • Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312(18):1880–1887. PMID: 25326637; PMCID: PMCPMC4278636. doi:10.1001/jama.2014.14604
  • Yang Y, Muzny DM, Xia F, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–1879. PMID: 25326635; PMCID: PMCPMC4326249. doi:10.1001/jama.2014.14601
  • Atwal PS, Brennan ML, Cox R, et al. Clinical whole-exome sequencing: are we there yet? Genet Med. 2014;16(9):717–719. PMID: 24525916. doi:10.1038/gim.2014.10
  • Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369(16):1502–1511. PMID: 24088041; PMCID: PMCPMC4211433. doi:10.1056/NEJMoa1306555
  • Alfares A, Alfadhel M, Wani T, et al. A multicenter clinical exome study in unselected cohorts from a consanguineous population of Saudi Arabia demonstrated a high diagnostic yield. Mol Genet Metab. 2017;121(2):91–95. doi:10.1016/j.ymgme.2017.04.002
  • Al-Dewik N, Mohd H, Al-Mureikhi M, et al. Clinical exome sequencing in 509 middle eastern families with suspected Mendelian diseases: the Qatari experience. Am J Med Genet A. 2019;179(6):927–935. PMID: 30919572; PMCID: PMCPMC6916397. doi:10.1002/ajmg.a.61126
  • Groza T, Köhler S, Doelken S, et al. Automatic concept recognition using the human phenotype ontology reference and test suite corpora. Database. 2015;2015:bav005–bav005. PMID: 25725061; PMCID: PMCPMC4343077. doi:10.1093/database/bav005
  • Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. PMID: 19505943; PMCID: PMCPMC2723002. doi:10.1093/bioinformatics/btp352
  • Cunningham F, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics. 2010;26(16):2069–2070. doi:10.1093/bioinformatics/btq330
  • Wang K, Li M, Hakonarson H, Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nuc Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603
  • Mckusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet. 2007;80(4):588–604. doi:10.1086/514346
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. PMID: 25741868; PMCID: PMCPMC4544753. doi:10.1038/gim.2015.30
  • Whiffin N, Minikel E, Walsh R, et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet Med. 2017;19(10):1151–1158. PMID: 28518168; PMCID: PMCPMC5563454. doi:10.1038/gim.2017.26
  • Gyngell C, Newson AJ, Wilkinson D, Stark Z, Savulescu J. Rapid challenges: ethics and genomic neonatal intensive care. Pediatrics. 2019;143:S14–s21. PMID: 30600266; PMCID: PMCPMC6379057. doi:10.1542/peds.2018-1099D
  • Yoon PW. Contribution of birth defects and genetic diseases to pediatric hospitalizations. Arch Pediatr Adolesc Med. 1997;151(11):1096. doi:10.1001/archpedi.1997.02170480026004
  • McCandless SE, Brunger JW, Cassidy SB. The burden of genetic disease on inpatient care in a children’s hospital. Am J Hum Genet. 2004;2004:1.
  • Wang Y, Kelly MA, Cowan TM, Longo N. A missense mutation in the OCTN2 gene associated with residual carnitine transport activity. Hum Mutat. 2000;15(3):238–245. PMID: 10679939. doi:10.1002/(sici)1098-1004(200003)15:3<238::aid-humu4>3.0.Co;2-3
  • Hess JF, Kohl TA, Kotrová M, et al. Library preparation for next generation sequencing: a review of automation strategies. Biotechnol Adv. 2020;41:107537. PMID: 32199980. doi:10.1016/j.biotechadv.2020.107537
  • Yang L, Wei Z, Chen X, et al. Use of medical exome sequencing for identification of underlying genetic defects in NICU: experience in a cohort of 2303 neonates in China. Clin Genet. 2022;101(1):101–109. PMID: 34671977. doi:10.1111/cge.14075
  • Hu X, Li N, Xu Y, et al. Proband-only medical exome sequencing as a cost-effective first-tier genetic diagnostic test for patients without prior molecular tests and clinical diagnosis in a developing country: the China experience. Genet Med. 2018;20(9):1045–1053. PMID: 29095814. doi:10.1038/gim.2017.195
  • French CE, Delon I, Dolling H, et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive Care Med. 2019;45(5):627–636. PMID: 30847515; PMCID: PMCPMC6483967. doi:10.1007/s00134-019-05552-x
  • Gubbels CS, VanNoy GE, Madden JA, et al. Prospective, phenotype-driven selection of critically ill neonates for rapid exome sequencing is associated with high diagnostic yield. Genet Med. 2020;22(4):736–744. PMID: 31780822; PMCID: PMCPMC7127968. doi:10.1038/s41436-019-0708-6
  • Kingsmore SF, Cakici JA, Clark MM, et al. A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants. Am J Hum Genet. 2019;105(4):719–733. PMID: 31564432; PMCID: PMCPMC6817534. doi:10.1016/j.ajhg.2019.08.009
  • Yang X, Li Q, Wang F, et al. Newborn screening and genetic analysis identify six novel genetic variants for primary carnitine deficiency in Ningbo Area, China. Front Genet. 2021;12:686137. PMID: 34249102; PMCID: PMCPMC8264545. doi:10.3389/fgene.2021.686137
  • Hong S, Wang L, Zhao D, et al. Clinical utility in infants with suspected monogenic conditions through next-generation sequencing. Mol Genet Genomic Med. 2019;7(6):e684. PMID: 30968598; PMCID: PMCPMC6565546. doi:10.1002/mgg3.684
  • Rose EC, Di San Filippo CA, Ndukwe Erlingsson UC, Ardon O, Pasquali M, Longo N. Genotype-phenotype correlation in primary carnitine deficiency. Hum Mutat. 2012;33(1):118–123. doi:10.1002/humu.21607
  • Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta. 2016;1863(10):2422–2435. PMID: 26828774; PMCID: PMCPMC4967041. doi:10.1016/j.bbamcr.2016.01.023
  • Meng L, Pammi M, Saronwala A, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. 2017;171(12):e173438–e. doi:10.1001/jamapediatrics.2017.3438
  • Vega FMDL, Chowdhury S, Moore B, Frise E, Kingsmore SF. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med. 2021;13:1. doi:10.1186/s13073-020-00808-4
  • Daniela H, Markus S, Ellen K, et al. MutationDistiller: user-driven identification of pathogenic DNA variants. Nuc Acids Res. 2019;2019(W1):W1.
  • Clark MM, Hildreth A, Batalov S, et al. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci Transl Med. 2019;11(489):eaat6177. doi:10.1126/scitranslmed.aat6177
  • Wise AL, Manolio TA, Mensah GA, et al. Genomic medicine for undiagnosed diseases. Lancet. 2019;394(10197):533–540. PMID: 31395441; PMCID: PMCPMC6709871. doi:10.1016/s0140-6736(19)31274-7
  • Ceyhan-Birsoy O, Murry JB, Machini K, et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the babyseq project. Am J Hum Genet. 2019;104(1):76–93. PMID: 30609409; PMCID: PMCPMC6323417. doi:10.1016/j.ajhg.2018.11.016
  • Osborn MJ, Newby GA, McElroy AN, et al. Base editor correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. J Invest Dermatol. 2020;140(2):338–47.e5. PMID: 31437443; PMCID: PMCPMC6983342. doi:10.1016/j.jid.2019.07.701