231
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

RUNX2 Reverses p53-Induced Chemotherapy Resistance in Gastric Cancer

, , , , , & show all
Pages 253-261 | Received 21 Oct 2022, Accepted 25 Feb 2023, Published online: 27 Mar 2023

References

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. PMID: 25651787. doi: 10.3322/caac.21262
  • Rahman R, Asombang AW, Ibdah JA. Characteristics of gastric cancer in Asia. World J Gastroenterol. 2014;20(16):4483–4490. PMID: 24782601; PMCID: PMC4000485. doi:10.3748/wjg.v20.i16.4483
  • Wang J, Yu JC, Kang WM, Ma ZQ. Treatment strategy for early gastric cancer. Surg Oncol. 2012; (2):119–123. PMID: 21256735. doi:10.1016/j.suronc.2010.12.004
  • Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives. Curr Med Chem. 2016;23(36):4135–4150. PMID: 27538692. doi: 10.2174/0929867323666160818093854
  • Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–2150. PMID: 16682732. doi:10.1200/JCO.2005.05.2308
  • Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–1883. PMID: 21892204. doi:10.1038/onc.2011.384
  • Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25:629–648. PMID: 19575648. doi:10.1146/annurev.cellbio.042308.113308
  • Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–764. PMID: 9182763. doi:10.1016/s0092-8674(00)80258-5
  • Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–771. PMID: 9182764. doi:10.1016/s0092-8674(00)80259-7
  • Man TK, Lu XY, Jaeweon K, et al. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer. 2004;4:45. PMID: 15298715; PMCID: PMC514550. doi:10.1186/1471-2407-4-45
  • Sadikovic B, Thorner P, Chilton-Macneill S, et al. Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer. 2010;10:202. PMID: 20465837; PMCID: PMC2875220. doi:10.1186/1471-2407-10-202
  • Roos A, Satterfield L, Zhao S, et al. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer. 2015;113(9):1289–1297. PMID: 26528706; PMCID: PMC4815801. doi:10.1038/bjc.2015.305
  • Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A. Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis. 2013;4(4):e610. PMID: 23618908; PMCID: PMC3641350. doi:10.1038/cddis.2013.127
  • Ozaki T, Sugimoto H, Nakamura M, et al. Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity. FEBS J. 2015;282(1):114–128. PMID: 25331851; PMCID: PMC4368372. doi:10.1111/febs.13108
  • Sugimoto H, Nakamura M, Yoda H, et al. Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Discov. 2015;1:15010. PMID: 27551445; PMCID: PMC4981025. doi:10.1038/cddiscovery.2015.10
  • Nakamura M, Sugimoto H, Ogata T, et al. Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death. Oncogenesis. 2016;5(6):e233. PMID: 27294865; PMCID: PMC4945741. doi:10.1038/oncsis.2016.40
  • Horn HF, Vousden KH. Coping with stress: multiple ways to activate p53. Oncogene. 2007; (9):1306–1316. PMID: 17322916. doi:10.1038/sj.onc.1210263
  • Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137(4):609–622. PMID: 19450511; PMCID: PMC3737742. doi:10.1016/j.cell.2009.04.050
  • Meek DW. Regulation of the p53 response and its relationship to cancer. Biochem J. 2015;469(3):325–346. PMID: 26205489. doi:10.1042/BJ20150517
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–310. PMID: 11099028. doi:10.1038/35042675
  • Fan S, el-Deiry WS, Bae I, et al. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res. 1994;54(22):5824–5830. PMID: 7954409.
  • Lai SL, Perng RP, Hwang J. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci. 2000;7(1):64–70. PMID: 10644891. doi:10.1007/BF02255920
  • Huang Y, Sadée W. Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Lett. 2006;239(2):168–182. PMID: 16169662. doi:10.1016/j.canlet.2005.07.032
  • Xiao SX, Li SJ, Fang WX, Chen J, Li HJ, Situ YL. Exploring the mechanism of Tripterygium wilfordii against cancer using network pharmacology and molecular docking. World J Tradit Chin Med. 2022;8:417–425.
  • Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–16. PMID: 1614522. doi:10.1038/358015a0
  • Zhang GH, Xue WB, An YF, et al. Distinct novel quinazolinone exhibits selective inhibition in MGC-803 cancer cells by dictating mutant p53 function. Eur J Med Chem. 2015;95:377–387. PMID: 25828929. doi:10.1016/j.ejmech.2015.03.053
  • Wei XW, Yuan JM, Huang WY, et al. 2-Styryl-4-aminoquinazoline derivatives as potent DNA-cleavage, p53-activation and in vivo effective anticancer agents. Eur J Med Chem. 2020;186:111851. PMID: 31761381. doi:10.1016/j.ejmech.2019.111851