210
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Rs11479 in Thymidine Phosphorylase Associated with Prognosis of Patients with Colorectal Cancer Who Received Capecitabine-Based Adjuvant Chemotherapy

, , , , , , , , , & show all
Pages 277-289 | Received 12 Nov 2022, Accepted 17 Feb 2023, Published online: 31 Mar 2023

References

  • Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(7):783–791. doi:10.1097/cm9.0000000000001474
  • Ciombor KK, Berlin J. Targeting metastatic colorectal cancer - present and emerging treatment options. Pharmgenomics Pers Med. 2014;7:137–144. doi:10.2147/pgpm.s47582
  • Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325(7):669–685. doi:10.1001/jama.2021.0106
  • Grothey A, Sobrero AF, Shields AF, et al. Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med. 2018;378(13):1177–1188. doi:10.1056/NEJMoa1713709
  • Yamazaki K, Yamanaka T, Shiozawa M, et al. Oxaliplatin-based adjuvant chemotherapy duration (3 versus 6 months) for high-risk stage II colon cancer: the randomized Phase III ACHIEVE-2 trial. Ann Oncol. 2021;32(1):77–84. doi:10.1016/j.annonc.2020.10.480
  • Dasari A, Morris VK, Allegra CJ, et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat Rev Clin Oncol. 2020;17(12):757–770. doi:10.1038/s41571-020-0392-0
  • Osumi H, Shinozaki E, Yamaguchi K, Zembutsu H. Clinical utility of circulating tumor DNA for colorectal cancer. Cancer Sci. 2019;110(4):1148–1155. doi:10.1111/cas.13972
  • Hamaguchi R, Tsuchiya T, Miyata G, et al. Efficacy of oral administration of cystine and theanine in colorectal cancer patients undergoing capecitabine-based adjuvant chemotherapy after surgery: a multi-institutional, randomized, double-blinded, placebo-controlled, Phase II trial (JORTC-CAM03). Support Care Cancer. 2020;28(8):3649–3657. doi:10.1007/s00520-019-05205-1
  • Yang L, Sun Y, Huang XE, et al. Carcinoma microsatellite instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for stage II rectal cancer. Asian Pac J Cancer Prev. 2015;16(4):1545–1551. doi:10.7314/apjcp.2015.16.4.1545
  • Lam SW, Guchelaar HJ, Boven E. The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat Rev. 2016;50:9–22. doi:10.1016/j.ctrv.2016.08.001
  • Mitselou A, Ioachim E, Skoufi U, et al. Predictive role of thymidine phosphorylase expression in patients with colorectal cancer and its association with angiogenesis-related proteins and extracellular matrix components. In vivo. 2012;26(6):1057–1067.
  • Won HS, Lee MA, Chung ES, et al. Comparison of thymidine phosphorylase expression and prognostic factors in gallbladder and bile duct cancer. BMC Cancer. 2010;10:564. doi:10.1186/1471-2407-10-564
  • Amatori F, Di Paolo A, Del Tacca M, et al. Thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer and normal mucosa in patients. Pharmacogenet Genomics. 2006;16(11):809–816. doi:10.1097/01.fpc.0000230410.07899.bc
  • Du YB, Zhang TF, Cui K, et al. TYMP基因遗传变异对R0切除术后的结直肠癌患者接受辅助化疗的疗效及安全性的影响 [The influence of Thymidine Phosphorylase genetic variation on clinical outcomes and safety of colorectal cancer patients received adjuvant chemotherapy after R0 resection]. Zhonghua Yi Xue Za Zhi. 2018;98(32):2569–2573. Chinese. doi:10.3760/cma.j.issn.0376-2491.2018.32.007
  • Huang L, Chen F, Chen Y, et al. Thymidine phosphorylase gene variant, platelet counts and survival in gastrointestinal cancer patients treated by fluoropyrimidines. Sci Rep. 2014;4:5697. doi:10.1038/srep05697
  • Chen WC, Wu G, Zhang W, et al. 卡培他滨方案在胃癌辅助化疗中的疗效及相关药物基因组学分析 [Clinical outcomes of gastric cancer patients received capecitabine based adjuvant chemotherapy and the corresponding pharmacogenomics analysis]. Zhonghua Yi Xue Za Zhi. 2018;98(42):3420–3425. Chinese. doi:10.3760/cma.j.issn.0376-2491.2018.42.009
  • Yang H, Wang H, Wang J, et al. Multiplex single-nucleotide polymorphism genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem. 2003;314(1):54–62. doi:10.1016/s0003-2697(02)00641-3
  • Song ZZ, Zhao LF, Zuo J, et al. Clinical outcomes and safety of apatinib mesylate in the treatment of advanced non-squamous non-small cell lung cancer in patients who progressed after standard therapy and analysis of the KDR gene polymorphism. Onco Targets Ther. 2020;13:603–613. doi:10.2147/ott.s222985
  • Zhang Y, Song J, Zhao Z, et al. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett. 2020;470:84–94. doi:10.1016/j.canlet.2019.10.016
  • Malla SB, Fisher DJ, Domingo E, et al. In-depth clinical and biological exploration of DNA damage immune response as a biomarker for oxaliplatin use in colorectal cancer. Clin Cancer Res. 2021;27(1):288–300. doi:10.1158/1078-0432.ccr-20-3237
  • Reece M, Saluja H, Hollington P, et al. The use of circulating tumor DNA to monitor and predict response to treatment in colorectal cancer. Front Genet. 2019;10:1118. doi:10.3389/fgene.2019.01118
  • Su J, Dai B, Yuan W, et al. The influence of PD-L1 genetic variation on the prognosis of R0 resection colorectal cancer patients received capecitabine-based adjuvant chemotherapy: a long-term follow-up, real-world retrospective study. Cancer Chemother Pharmacol. 2020;85(5):969–978. doi:10.1007/s00280-020-04069-1
  • Tie J, Cohen JD, Wang Y, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 2019;5(12):1710–1717. doi:10.1001/jamaoncol.2019.3616
  • Li AJ, Li HG, Tang EJ, et al. PIK3CA and TP53 mutations predict overall survival of stage II/III colorectal cancer patients. World J Gastroenterol. 2018;24(5):631–640. doi:10.3748/wjg.v24.i5.631
  • Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in colorectal cancer: current research and future prospects. Int J Mol Sci. 2020;21(15):5311. doi:10.3390/ijms21155311
  • Schmoll HJ, Tabernero J, Maroun J, et al. Capecitabine plus oxaliplatin compared with fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer: final results of the NO16968 randomized controlled phase III trial. J Clin Oncol. 2015;33(32):3733–3740. doi:10.1200/jco.2015.60.9107
  • Yang J, Xu H, Guo X, et al. Pretreatment inflammatory indexes as prognostic predictors for survival in colorectal cancer patients receiving neoadjuvant chemoradiotherapy. Sci Rep. 2018;8(1):3044. doi:10.1038/s41598-018-21093-7
  • Iveson TJ, Sobrero AF, Yoshino T, et al. Duration of adjuvant doublet chemotherapy (3 or 6 months) in patients with high-risk stage II colorectal cancer. J Clin Oncol. 2021;39(6):631–641. doi:10.1200/jco.20.01330
  • de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57(10):1229–1254. doi:10.1007/s40262-018-0644-7
  • Jennings BA, Loke YK, Skinner J, et al. Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines. PLoS One. 2013;8(10):e78053. doi:10.1371/journal.pone.0078053
  • Zhang DY, Yuan XQ, Yan H, et al. Association between DCK 35708 T>C variation and clinical outcomes of acute myeloid leukemia in South Chinese patients. Pharmacogenomics. 2016;17(14):1519–1531. doi:10.2217/pgs-2016-0084
  • Fariña-Sarasqueta A, van Lijnschoten G, Rutten HJ, van den Brule AJ. Value of gene polymorphisms as markers of 5-FU therapy response in stage III colon carcinoma: a pilot study. Cancer Chemother Pharmacol. 2010;66(6):1167–1171. doi:10.1007/s00280-010-1403-0
  • Yan Z, Gu YY, Hu XD, et al. Clinical outcomes and safety of apatinib monotherapy in the treatment of patients with advanced epithelial ovarian carcinoma who progressed after standard regimens and the analysis of the VEGFR2 polymorphism. Oncol Lett. 2020;20(3):3035–3045. doi:10.3892/ol.2020.11857
  • Marangoni E, Laurent C, Coussy F, et al. Capecitabine efficacy is correlated with TYMP and RB1 expression in PDX established from triple-negative breast cancers. Clin Cancer Res. 2018;24(11):2605–2615. doi:10.1158/1078-0432.ccr-17-3490
  • Lu M, Gao J, Wang XC, Shen L. Expressions of thymidylate synthase, thymidine phosphorylase, class III beta-tubulin, and excision repair cross-complementing group 1 predict response in advanced gastric cancer patients receiving capecitabine plus paclitaxel or cisplatin. Chin J Cancer Res. 2011;23(4):288–294. doi:10.1007/s11670-011-0288-8
  • Huang X, Wang L, Chen Y, Zheng X, Wang X. Poor prognosis associated with high levels of thymidine phosphorylase and thrombocytosis in patients with renal cell carcinoma. Urol Int. 2017;98(2):162–168. doi:10.1159/000448483
  • Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev. 2009;29(6):903–953. doi:10.1002/med.20159