180
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Leucyl and Cystinyl Aminopeptidase as a Prognostic-Related Biomarker in OV Correlating with Immune Infiltrates

, , , , , , , , & show all
Pages 551-568 | Received 03 Dec 2022, Accepted 03 May 2023, Published online: 02 Jun 2023

References

  • Fishman DA, Bozorgi K. The scientific basis of early detection of epithelial ovarian cancer: the National Ovarian Cancer Early Detection Program (NOCEDP). Cancer Treat Res. 2002;107:3–28. doi:10.1007/978-1-4757-3587-1_1
  • Matulonis UA, Sood AK, Fallowfield L, et al. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061. doi:10.1038/nrdp.2016.61
  • Hidayat YM, Munizar M, Harsono AB, Winarno GNA, Hasanuddin H, Salima S. Chemokine ligand 5 to predict optimal cytoreduction in ovarian cancer. Int J Gen Med. 2020;13:1201–1206. doi:10.2147/IJGM.S280858
  • Elias KM, Guo J, Bast RC. Early detection of ovarian cancer. Hematol Oncol Clin North Am. 2018;32(6):903–914. doi:10.1016/j.hoc.2018.07.003
  • Karnezis AN, Cho KR, Gilks CB, et al. The disparate origins of ovarian cancers: pathogenesis and prevention strategies. Nat Rev Cancer. 2017;17(1):65–74. doi:10.1038/nrc.2016.113
  • Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280–304. doi:10.3322/caac.21559
  • Bast RC, Lu Z, Han CY, et al. Biomarkers and strategies for early detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2020;29(12):2504–2512. doi:10.1158/1055-9965.EPI-20-1057
  • Menon U, Gentry-Maharaj A, Burnell M, et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet. 2021;397(10290):2182–2193. doi:10.1016/S0140-6736(21)00731-5
  • La Vecchia C. Ovarian cancer: epidemiology and risk factors. Eur J Cancer Prev. 2017;26(1):55–62. doi:10.1097/CEJ.0000000000000217
  • Elkins EA, Kayla AW, Newberry KE, et al. Identification of an oxytocinase/vasopressinase-like leucyl-cystinyl aminopeptidase (LNPEP) in teleost fish and evidence for hypothalamic mRNA expression linked to behavioral social status. Gen Comp Endocrinol. 2017;250:58–69. doi:10.1016/j.ygcen.2017.06.002
  • Paladini F, Fiorillo MT, Tedeschi V, et al. The multifaceted nature of aminopeptidases ERAP1, ERAP2, and LNPEP: from evolution to disease. Front Immunol. 2020;11:1576. doi:10.3389/fimmu.2020.01576
  • Li DT, Habtemichael EN, Bogan JS, et al. Vasopressin inactivation: role of insulin-regulated aminopeptidase. Vitam Horm. 2020;113:101–128. doi:10.1016/bs.vh.2019.08.017
  • Cheng H, Li Y, Zuo XB, et al. Identification of a missense variant in LNPEP that confers psoriasis risk. J Invest Dermatol. 2014;134(2):359–365. doi:10.1038/jid.2013.317
  • Liu WH, Fang YN, Wu CC, et al. Differential gene expression profile of renin-angiotensin system in the left atrium in mitral regurgitation patients. Dis Markers. 2018;2018:6924608. doi:10.1155/2018/6924608
  • Park SJ, Yoon BH, Kim SK, et al. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genomics. 2019;12:101. doi:10.1186/s12920-019-0514-7
  • Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102. doi:10.1093/nar/gkx247
  • Yuan H, Yan M, Zhang G, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Research. 2019;47:D900–D908. doi:10.1093/nar/gky939
  • Wu C, Jin X, Tsueng G, et al. BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res. 2016;44(D1):D313–6. doi:10.1093/nar/gkv1104
  • Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101:6062–6067. doi:10.1073/pnas.0400782101
  • Ru B, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35:4200–4202. doi:10.1093/bioinformatics/btz210
  • Pontén F, Jirstrom K, Uhlen M, et al. The human protein atlas--a tool for pathology. J Pathol. 2008;216(4):387–393. doi:10.1002/path.2440
  • Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507. doi:10.1126/science.aan2507
  • Vasaikar SV, Straub P, Wang J, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46:D956–D963. doi:10.1093/nar/gkx1090
  • Li F, Guo H, Wang Y, et al. Profiles of tumor-infiltrating immune cells and prognostic genes associated with the microenvironment of bladder cancer. Int Immunopharmacol. 2020;85:106641. doi:10.1016/j.intimp.2020.106641
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1. doi:10.1126/scisignal.2004088
  • Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–D947. doi:10.1093/nar/gky1015
  • Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–220. doi:10.1093/nar/gkq537
  • Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–D368. doi:10.1093/nar/gkw937
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi:10.1093/nar/gky1131
  • Westermarck J, Ivaska J, Corthals GL. Identification of protein interactions involved in cellular signaling. Mol Cell Proteom. 2013;12:1752–1763. doi:10.1074/mcp.R113.027771
  • Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 2000;14:1027–1047. doi:10.1101/gad.14.9.1027
  • Nakada TA, Russell JA, Wellman H, et al. Leucyl/cystinyl aminopeptidase gene variants in septic shock. Chest. 2011;139(5):1042–1049. doi:10.1378/chest
  • Khaliq OP, Konoshita T, Moodley J, et al. The role of LNPEP and ANPEP gene polymorphisms in the pathogenesis of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2020;252:160–165. doi:10.1016/j.ejogrb.2020.06.037
  • Diel de Amorim M, Bramer SA, Rajamanickam GD, et al. Endometrial and luteal gene expression of putative gene regulators of the equine maternal recognition of pregnancy. Anim Reprod Sci. 2022;245:107064. doi:10.1016/j.anireprosci.2022.107064
  • Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33:1001–1012. doi:10.1016/j.cmet.2021.02.015
  • Pipkin ME. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol Rev. 2021;300:100–124. doi:10.1111/imr.12954
  • Liu C, Workman CJ, Vignali DAA. Targeting regulatory T cells in tumors. FEBS J. 2016;283:2731–2748. doi:10.1111/febs.13656
  • Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression-implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16:356–371. doi:10.1038/s41571-019-0175-7
  • Jiang W, He Y, He W, et al. Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2020;11:622509. doi:10.3389/fimmu.2020.622509