165
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Plasma Homocysteine (Hcy) Concentration Functions as a Predictive Biomarker of SPECT-Evaluated Post-Ischemic Hyperperfusion in Acute Ischemic Stroke

, &
Pages 481-489 | Received 23 Dec 2022, Accepted 24 Apr 2023, Published online: 25 May 2023

References

  • Tu WJ, Hua Y, Yan F, et al. Prevalence of stroke in China, 2013–2019: a population-based study. Lancet Reg Health West Pac. 2022;28:100550. doi:10.1016/j.lanwpc.2022.100550
  • Feigin VL, Stark BA, Johnson CO. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. doi:10.1016/S1474-4422(21)00252-0
  • Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528. doi:10.1161/CIR.0000000000000659
  • Muhammad IF, Borné Y, Zaigham S, et al. Comparison of risk factors for ischemic stroke and coronary events in a population-based cohort. BMC Cardiovasc Disord. 2021;21(1):536. doi:10.1186/s12872-021-02344-4
  • Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review. JAMA. 2021;325(11):1088–1098. doi:10.1001/jama.2020.26867
  • Lioutas VA, Ivan CS, Himali JJ, et al. Incidence of transient ischemic attack and association with long-term risk of stroke. JAMA. 2021;325(4):373–381. doi:10.1001/jama.2020.25071
  • Degan D, Ornello R, Tiseo C, et al. Epidemiology of transient ischemic attacks using time- or tissue-based definitions: a population-based study. Stroke. 2017;48(3):530–536. doi:10.1161/STROKEAHA.116.015417
  • Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–2089. doi:10.1161/STR.0b013e318296aeca
  • Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–198. doi:10.1016/j.neuron.2010.07.002
  • McCabe C, Arroja MM, Reid E, Macrae IM. Animal models of ischaemic stroke and characterisation of the ischaemic penumbra. Neuropharmacology. 2018;134(Pt B):169–177. doi:10.1016/j.neuropharm.2017.09.022
  • Brunner C, Isabel C, Martin A, et al. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2017;37(1):263–276. doi:10.1177/0271678X15622466
  • Yu S, Liebeskind DS, Dua S, et al. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab. 2015;35(4):630–637. doi:10.1038/jcbfm.2014.238
  • Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MRI characterization of post-recanalization hyperperfusion in humans. Neurology. 2001;57(11):2015–2021. doi:10.1212/WNL.57.11.2015
  • Tran Dinh YR, Ille O, Guichard JP, Haguenau M, Seylaz J. Cerebral postischemic hyperperfusion assessed by Xenon-133 SPECT. J Nucl Med. 1997;38(4):602–607.
  • Wegener S, Artmann J, Luft AR, Buxton RB, Weller M, Wong EC. The time of maximum post-ischemic hyperperfusion indicates infarct growth following transient experimental ischemia. PLoS One. 2013;8(5):e65322. doi:10.1371/journal.pone.0065322
  • Tu W, Yan F, Chao B, Ji X, Wang L. Status of hyperhomocysteinemia in China: results from the China Stroke High-risk Population Screening Program, 2018. Front Med. 2021;15(6):903–912. doi:10.1007/s11684-021-0871-4
  • Zhang T, Jiang Y, Zhang S, et al. The association between homocysteine and ischemic stroke subtypes in Chinese: a meta-analysis. Medicine. 2020;99(12):e19467. doi:10.1097/MD.0000000000019467
  • Yang Z, Wang L, Zhang W, Wang X, Zhou S. Plasma homocysteine involved in methylation and expression of thrombomodulin in cerebral infarction. Biochem Biophys Res Commun. 2016;473(4):1218–1222. doi:10.1016/j.bbrc.2016.04.042
  • Toda N, Okamura T. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide. Pflugers Arch. 2016;468(9):1517–1525. doi:10.1007/s00424-016-1849-y
  • Lehotský J, Tothová B, Kovalská M, et al. Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front Neurosci. 2016;10:538. doi:10.3389/fnins.2016.00538
  • Nishikawa M, Kumakura Y, Young SN, et al. Increasing blood oxygen increases an index of 5-HT synthesis in human brain as measured using alpha-[(11)C]methyl-L-tryptophan and positron emission tomography. Neurochem Int. 2005;47(8):556–564. doi:10.1016/j.neuint.2005.07.006
  • Gopinath G, Aslam M, Anusha P. Role of magnetic resonance perfusion imaging in acute stroke: arterial spin labeling versus dynamic susceptibility contrast-enhanced perfusion. Cureus. 2022;14(3):e23625. doi:10.7759/cureus.23625
  • McLeod DD, Parsons MW, Hood R, et al. Perfusion computed tomography thresholds defining ischemic penumbra and infarct core: studies in a rat stroke model. Int J Stroke. 2015;10(4):553–559. doi:10.1111/ijs.12147
  • Fukuma K, Kajimoto K, Tanaka T, et al. Visualizing prolonged hyperperfusion in post-stroke epilepsy using postictal subtraction SPECT. J Cereb Blood Flow Metab. 2021;41(1):146–156. doi:10.1177/0271678X20902742
  • Masdeu JC, Brass LM. SPECT imaging of stroke. J Neuroimaging. 1995;5(Suppl 1):S14–22. doi:10.1111/jon19955s1s14
  • Abumiya T, Katoh M, Moriwaki T, et al. Utility of early post-treatment single-photon emission computed tomography imaging to predict outcome in stroke patients treated with intravenous tissue plasminogen activator. J Stroke Cerebrovasc Dis. 2014;23(5):896–901. doi:10.1016/j.jstrokecerebrovasdis.2013.07.028
  • Okazaki S, Yamagami H, Yoshimoto T, et al. Cerebral hyperperfusion on arterial spin labeling MRI after reperfusion therapy is related to hemorrhagic transformation. J Cereb Blood Flow Metab. 2017;37(9):3087–3090. doi:10.1177/0271678X17718099
  • Ataka T, Kimura N, Matsubara E. Temporal changes in brain perfusion in neuronal intranuclear inclusion disease. Int Med. 2021;60(6):941–944. doi:10.2169/internalmedicine.5743-20
  • Moretti R, Caruso P. The controversial role of homocysteine in neurology: from labs to clinical practice. Int J Mol Sci. 2019;20(1). doi:10.3390/ijms20010231
  • Esse R, Barroso M, Tavares de Almeida I, Castro R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art. Int J Mol Sci. 2019;20(4):867. doi:10.3390/ijms20040867
  • Wu X, Zhang L, Miao Y, et al. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol. 2019;20:46–59. doi:10.1016/j.redox.2018.09.021
  • Diao L, Bai L, Jiang X, Li J, Zhang Q. Long-chain noncoding RNA GAS5 mediates oxidative stress in cardiac microvascular endothelial cells injury. J Cell Physiol. 2019;234(10):17649–17662. doi:10.1002/jcp.28388
  • Jin P, Bian Y, Wang K, et al. Homocysteine accelerates atherosclerosis via inhibiting LXRα-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages. Life Sci. 2018;214:41–50. doi:10.1016/j.lfs.2018.10.060
  • Feng Y, Kang K, Xue Q, Chen Y, Wang W, Cao J. Value of plasma homocysteine to predict stroke, cardiovascular diseases, and new-onset hypertension: a retrospective cohort study. Medicine. 2020;99(34):e21541. doi:10.1097/MD.0000000000021541
  • Borowczyk K, Piechocka J, Głowacki R, et al. Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial. J Intern Med. 2019;285(2):232–244. doi:10.1111/joim.12834
  • Davis Armstrong NM, Chen WM, Brewer MS, et al. Epigenome-wide analyses identify two novel associations with recurrent stroke in the vitamin intervention for stroke prevention clinical trial. Front Genet. 2018;9:358. doi:10.3389/fgene.2018.00358
  • Zaric BL, Obradovic M, Bajic V, Haidara MA, Jovanovic M, Isenovic ER. Homocysteine and Hyperhomocysteinaemia. Curr Med Chem. 2019;26(16):2948–2961. doi:10.2174/0929867325666180313105949
  • Li L, Ma X, Zeng L, et al. Impact of homocysteine levels on clinical outcome in patients with acute ischemic stroke receiving intravenous thrombolysis therapy. PeerJ. 2020;8:e9474. doi:10.7717/peerj.9474
  • Scheid S, Goeller M, Baar W, et al. Hydrogen sulfide reduces ischemia and reperfusion injury in neuronal cells in a dose- and time-dependent manner. Int J Mol Sci. 2021;22(18):10099. doi:10.3390/ijms221810099
  • Wong PT, Qu K, Chimon GN, et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. J Neuropathol Exp Neurol. 2006;65(2):109–115. doi:10.1097/01.jnen.0000199571.96472.c7
  • Bajic Z, Sobot T, Skrbic R, et al. Homocysteine, vitamins B6 and folic acid in experimental models of myocardial infarction and heart failure-how strong is that link? Biomolecules. 2022;12(4):536. doi:10.3390/biom12040536
  • Shi Z, Liu S, Guan Y, et al. Changes in total homocysteine levels after acute stroke and recurrence of stroke. Sci Rep. 2018;8(1):6993. doi:10.1038/s41598-018-25398-5
  • Zhou F, Chen B, Chen C, et al. Elevated homocysteine levels contribute to larger hematoma volume in patients with intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2015;24(4):784–788. doi:10.1016/j.jstrokecerebrovasdis.2014.11.005
  • Hiltke TR, Lee TC, Bobek LA. Structure/function analysis of human cystatin SN and comparison of the cysteine proteinase inhibitory profiles of human cystatins C and SN. J Dent Res. 1999;78(8):1401–1409. doi:10.1177/00220345990780080501
  • Auclair JR, Johnson JL, Liu Q, et al. Post-translational modification by cysteine protects Cu/Zn-superoxide dismutase from oxidative damage. Biochemistry. 2013;52(36):6137–6144. doi:10.1021/bi4006122
  • Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24:539–577. doi:10.1146/annurev.nutr.24.012003.132418
  • El-Khairy L, Vollset SE, Refsum H, Ueland PM. Plasma total cysteine, mortality, and cardiovascular disease hospitalizations: the Hordaland Homocysteine Study. Clin Chem. 2003;49(6 Pt 1):895–900. doi:10.1373/49.6.895
  • Luo Y, Jin H, Guo ZN, et al. Effect of hyperhomocysteinemia on clinical outcome and hemorrhagic transformation after thrombolysis in ischemic stroke patients. Front Neurol. 2019;10:592. doi:10.3389/fneur.2019.00592
  • Lima A, Ferin R, Bourbon M, Baptista J, Pavão ML. Hypercysteinemia, a potential risk factor for central obesity and related disorders in Azores, Portugal. J Nutr Metab. 2019;2019:1826780. doi:10.1155/2019/1826780
  • Rehman T, Shabbir MA, Inam-Ur-Raheem M, et al. Cysteine and homocysteine as biomarker of various diseases. Food Sci Nutr. 2020;8(9):4696–4707. doi:10.1002/fsn3.1818
  • Albert CM, Cook NR, Gaziano JM, et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA. 2008;299(17):2027–2036. doi:10.1001/jama.299.17.2027
  • Bønaa KH, Njølstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578–1588. doi:10.1056/NEJMoa055227
  • Ribo M, Montaner J, Molina CA, Arenillas JF, Santamarina E, Alvarez-Sabín J. Admission fibrinolytic profile predicts clot lysis resistance in stroke patients treated with tissue plasminogen activator. Thromb Haemost. 2004;91(6):1146–1151. doi:10.1160/TH04-02-0097
  • Ribo M, Montaner J, Molina CA, et al. Admission fibrinolytic profile is associated with symptomatic hemorrhagic transformation in stroke patients treated with tissue plasminogen activator. Stroke. 2004;35(9):2123–2127. doi:10.1161/01.STR.0000137608.73660.4c
  • Fan CD, Sun JY, Fu XT, et al. Astaxanthin attenuates homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Front Physiol. 2017;8:1041. doi:10.3389/fphys.2017.01041