259
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Clinical and Gene Analysis of Fatty Acid Oxidation Disorders Found in Neonatal Tandem Mass Spectrometry Screening

&
Pages 577-587 | Received 26 Dec 2022, Accepted 18 May 2023, Published online: 05 Jun 2023

References

  • Alfares A, Alfadhel M, Mujamammi A, et al. Proteomic and molecular assessment of the common Saudi variant in ACADVL gene through mesenchymal stem cells. Front Cell Dev Biol. 2020;7:365. doi:10.3389/fcell.2019.00365
  • Yamada K, Shiraishi H, Oki E, et al. Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan. Mol Genet Metab Rep. 2018;15:55–63. doi:10.1016/j.ymgmr.2018.02.003
  • Merritt JL, MacLeod E, Jurecka A, et al. Clinical manifestations and management of fatty acid oxidation disorders. Rev Endocr Metab Disord. 2020;21(4):479–493. doi:10.1007/s11154-020-09568-3
  • Kang E, Kim YM, Kang M, et al. Clinical and genetic characteristics of patients with fatty acid oxidation disorders identified by newborn screening. BMC Pediatr. 2018;18(1):103. doi:10.1186/s12887-018-1069-z
  • Maguolo A, Rodella G, Dianin A, et al. Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: a single centre experience. Mol Genet Metab Rep. 2020;24:100632. doi:10.1016/j.ymgmr.2020.100632
  • Yang Y, Wang L, Wang B, et al. Application of next-generation sequencing following tandem mass spectrometry to expand newborn screening for inborn errors of metabolism: a multicenter study. Front Genet. 2019;10:86. doi:10.3389/fgene.2019.00086
  • Irwin C, Mienie LJ, Wevers RA, et al. GC-MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Sci Rep. 2018;8(1):5775. doi:10.1038/s41598-018-24128-1
  • Merritt JL, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018;6(24):473. doi:10.21037/atm.2018.10.57
  • Huang XW, Zhang Y. Newborn screening for fatty acid oxidation disorders. Chin J Pract Pediatr. 2019;34(1):11–14. doi:10.19538/j.ek2019010605
  • Han L, Han F, Ye J, et al. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry. J Clin Lab Anal. 2015;29(2):162–168. doi:10.1002/jcla.21745
  • Yang XF, Liu GS, Yi B. Primary carnitine deficiency in two sisters with intractable epilepsy and reversible metabolic cardiomyopathy: two case reports. Exp Ther Med. 2020;20(5):118. doi:10.3892/etm.2020.9246
  • Ravindranath A, Pai G, Srivastava A, et al. Infant with hepatomegaly and hypoglycemia: a setting for fatty acid oxidation defects. Indian J Gastroenterol. 2017;36(5):429–434. doi:10.1007/s12664-017-0790-0
  • Deswal S, Bijarnia-Mahay S, Manocha V, et al. Primary carnitine deficiency – a rare treatable cause of cardiomyopathy and massive hepatomegaly. Indian J Pediatr. 2017;84(1):83–85. doi:10.1007/s12098-016-2227-7
  • Baruteau J, Sachs P, Broué P, et al. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis. 2013;36(5):795–803. doi:10.1007/s10545-012-9542-6
  • Yang RL, Tong F, Zheng J. Screening, diagnosis and treatment of primary carnitine deficiency. Chin J Pract Pediatr. 2019;34(1):14–18. doi:10.19538/j.ek2019010606
  • Li FY, El-Hattab AW, Bawle EV, et al. Molecular spectrum of SLC22A5 (OCTN2) gene mutations detected in 143 subjects evaluated for systemic carnitine deficiency. Hum Mutat. 2010;31(8):E1632–E1651. doi:10.1002/humu.21311
  • Jun JS, Lee EJ, Park HD, et al. Systemic primary carnitine deficiency with hypoglycemic encephalopathy. Ann Pediatr Endocrinol Metab. 2016;21(4):226–229. doi:10.6065/apem.2016.21.4.226
  • Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2012;7:68. doi:10.1186/1750-1172-7-68
  • Choi JS, Yoo HW, Lee KJ, et al. Novel mutations in the CPT1A gene identified in the patient presenting jaundice as the first manifestation of carnitine palmitoyltransferase 1A deficiency. Pediatr Gastroenterol Hepatol Nutr. 2016;19(1):76–81. doi:10.5223/pghn.2016.19.1.76
  • Borch L, Lund AM, Wibrand F, et al. Normal levels of plasma free carnitine and acylcarnitines in follow-up samples from a presymptomatic case of carnitine palmitoyl transferase 1 (CPT1) deficiency detected through newborn screening in Denmark. JIMD Rep. 2012;3:11–15. doi:10.1007/8904_2011_35
  • Heiner-Fokkema MR, Vaz FM, Maatman R, et al. Reliable diagnosis of carnitine palmitoyltransferase type IA deficiency by analysis of plasma acylcarnitine profiles. JIMD Rep. 2017;32:33–39. doi:10.1007/8904_2016_564
  • Gessner BD, Gillingham MB, Johnson MA, et al. Prevalence and distribution of the c.1436C→T sequence variant of carnitine palmitoyltransferase 1A among Alaska Native infants. J Pediatr. 2011;158(1):124–129. doi:10.1016/j.jpeds.2010.07.031
  • Tsuburaya R, Sakamoto O, Arai N, et al. Molecular analysis of a presymptomatic case of carnitine palmitoyl transferase I (CPT I) deficiency detected by tandem mass spectrometry newborn screening in Japan. Brain Dev. 2010;32(5):409–411. doi:10.1016/j.braindev.2009.03.004
  • Cui D, Hu YH, Shen D, et al. Clinical characteristics and gene mutation analysis of a child with carnitine palmitoyltransferase 1A deficiency. Chin J Med Genet. 2017;34(2):228–231. doi:10.3760/cma.j.issn.1003-9406.2017.02.017
  • Lisyová J, Chandoga J, Jungová P, et al. An unusually high frequency of SCAD deficiency caused by two pathogenic variants in the ACADS gene and its relationship to the ethnic structure in Slovakia. BMC Med Genet. 2018;19(1):64. doi:10.1186/s12881-018-0566-0
  • Maduemem KE. Medium-chain acyl-Coenzyme A dehydrogenase deficiency (MCADD): a cause of severe hypoglycaemia in an apparently well child. BMJ Case Rep. 2016;2016:bcr2016217538. doi:10.1136/bcr-2016-217538
  • Yamada K, Kobayashi H, Bo R, et al. Clinical, biochemical and molecular investigation of adult- onset glutaric acidemia type II: characteristics in comparison with pediatric cases. Brain Dev. 2016;38(3):293–301. doi:10.1016/j.braindev.2015.08.011
  • Dai DL, Wen FQ, Zhou SM, et al. Clinical manifestations and genetic analysis of late-onset multiple acyl coenzyme A dehydrogenase deficiency in combined severe fatty liver. Chin J Med Genet. 2016;33(2):191–194. doi:10.3760/cma.j.issn.1003-9406.2016.02.014
  • Niu DM, Chien YH, Chiang CC, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis. 2010;33(Suppl 2):S295–S305. doi:10.1007/s10545-010-9129-z
  • Han LS. Paying attention to screening, diagnosis and treatment of fatty acid oxidation disorders. Chin J Pract Pediatr. 2019;34(1):6–10. doi:10.19538/j.ek2019010604
  • Xi J, Wen B, Lin J, et al. Clinical features and ETFDH mutation spectrum in a cohort of 90 Chinese patients with late-onset multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 2014;37(3):399–404. doi:10.1007/s10545-013-9671-6
  • Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis. 2014;9:117. doi:10.1186/s13023-014-0117-5
  • Olsen RK, Olpin SE, Andresen BS, et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain. 2007;130(Pt 8):2045–2054. doi:10.1093/brain/awm135
  • Wang ZQ, Chen XJ, Murong SX, et al. Molecular analysis of 51 unrelated pedigrees with late-onset multiple acyl-CoA dehydrogenation deficiency (MADD) in southern China confirmed the most common ETFDH mutation and high carrier frequency of c.250G>A. J Mol Med. 2011;89(6):569–576. doi:10.1007/s00109-011-0725-7
  • Cotelli MS, Vielmi V, Rimoldi M, et al. Riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency with unknown genetic defect. Neurol Sci. 2012;33(6):1383–1387. doi:10.1007/s10072-011-0900-1
  • Zhang RN, Qiu WJ, Ye J, et al. Clinical and biochemical characteristics in children and adults with multiple acyl-CoA dehydrogenase deficiency. J Clin Pediatr. 2012;30(5):446–449. doi:10.3969/j.issn.1000-3606.2012.05.014