274
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Transporter Associated with Antigen Processing 1 Gene Polymorphisms Increase the Susceptibility to Tuberculosis

, , , , , , , , & ORCID Icon show all
Pages 325-336 | Received 10 Jan 2023, Accepted 31 Mar 2023, Published online: 13 Apr 2023

References

  • Abel L, El-Baghdadi J, Bousfiha AA, Casanova J-L, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130428. doi:10.1098/rstb.2013.0428
  • Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature. 2020;577(7788):95–102. doi:10.1038/s41586-019-1817-8
  • Khalilullah SA, Harapan H, Hasan NA, Winardi W, Ichsan I, Mulyadi M. Host genome polymorphisms and tuberculosis infection: what we have to say? Egypt J Chest Dis Tuberc. 2014;63(1):173–185. doi:10.1016/j.ejcdt.2013.12.002
  • Aravindan PP. Host genetics and tuberculosis: theory of genetic polymorphism and tuberculosis. Lung India. 2019;36(3):244–252. doi:10.4103/lungindia.lungindia_146_15
  • Dallmann-Sauer M, Correa-Macedo W, Schurr E. Human genetics of mycobacterial disease. Mamm Genome. 2018;29(7–8):523–538. doi:10.1007/s00335-018-9765-4
  • Möller M, Hoal EG. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis. 2010;90(2):71–83. doi:10.1016/j.tube.2010.02.002
  • Correa-Macedo W, Cambri G, Schurr E. The interplay of human and mycobacterium tuberculosis genomic variability. Front Genet. 2019;10:865. doi:10.3389/fgene.2019.00865
  • Miyahara R, Smittipat N, Juthayothin T, et al. Risk factors associated with large clusters of tuberculosis patients determined by whole-genome sequencing in a high-tuberculosis-burden country. Tuberculosis. 2020;125:101991. doi:10.1016/j.tube.2020.101991
  • Zheng R, Li Z, He F, et al. Genome-wide association study identifies two risk loci for tuberculosis in Han Chinese. Nat Commun. 2018;9(1):4072. doi:10.1038/s41467-018-06539-w
  • Salie M, van der Merwe L, Möller M, et al. Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. J Infect Dis. 2014;209(2):216–223. doi:10.1093/infdis/jit443
  • Yuliwulandari R, Sachrowardi Q, Nakajima H, et al. Association of HLA-A, -B, and -DRB1 with pulmonary tuberculosis in western Javanese Indonesia. Hum Immunol. 2010;71(7):697–701. doi:10.1016/j.humimm.2010.04.005
  • Feng WX, Mokrousov I, Wang BB, et al. Tag SNP polymorphism of CCL2 and its role in clinical tuberculosis in Han Chinese pediatric population. PLoS One. 2011;6(2):e14652. doi:10.1371/journal.pone.0014652
  • Liu S, Liu N, Wang H, et al. CCR5 promoter polymorphisms associated with pulmonary tuberculosis in a Chinese Han Population. Front Immunol. 2020;11:544548. doi:10.3389/fimmu.2020.544548
  • Li HT, Zhang TT, Zhou YQ, Huang QH, Huang J. SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis. 2006;10(1):3–12.
  • Ma X, Reich RA, Wright JA, et al. Association between interleukin-8 gene alleles and human susceptibility to tuberculosis disease. J Infect Dis. 2003;188(3):349–355. doi:10.1086/376559
  • Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One. 2007;2(12):e1318. doi:10.1371/journal.pone.0001318
  • Austin CM, Ma X, Graviss EA. Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J Infect Dis. 2008;197(12):1713–1716. doi:10.1086/588384
  • Behar SM. Antigen-specific CD8(+) T cells and protective immunity to tuberculosis. Adv Exp Med Biol. 2013;783:141–163. doi:10.1007/978-1-4614-6111-1_8
  • Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 1992;89(24):12013–12017. doi:10.1073/pnas.89.24.12013
  • Shen L, Sigal LJ, Boes M, Rock KL. Important role of cathepsin S in generating peptides for TAP-independent MHC class I cross presentation in vivo. Immunity. 2004;21(2):155–165. doi:10.1016/j.immuni.2004.07.004
  • Harriff MJ, Burgdorf S, Kurts C, Wiertz EJ, Lewinsohn DA, Lewinsohn DM. TAP mediates import of Mycobacterium tuberculosis-derived peptides into phagosomes and facilitates loading onto HLA-I. PLoS One. 2013;8(11):e79571. doi:10.1371/journal.pone.0079571
  • Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science. 1995;267(5195):243–246. doi:10.1126/science.7809629
  • Grotzke JE, Harriff MJ, Siler AC, et al. The Mycobacterium tuberculosis phagosome is a HLA-I processing competent organelle. PLoS Pathog. 2009;5(4):e1000374. doi:10.1371/journal.ppat.1000374
  • Colonna M, Bresnahan M, Bahram S, Strominger JL, Spies T. Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci U S A. 1992;89(9):3932–3936. doi:10.1073/pnas.89.9.3932
  • Quadri SA, Singal DP. Peptide transport in human lymphoblastoid and tumor cells: effect of transporter associated with antigen presentation (TAP) polymorphism. Immunol Lett. 1998;61(1):25–31. doi:10.1016/s0165-2478(97)00157-0
  • Sunder SR, Hanumanth SR, Gaddam S, Jonnalagada S, Valluri VL. Association of TAP 1 and 2 gene polymorphisms with human immunodeficiency virus-tuberculosis co-infection. Hum Immunol. 2011;72(10):908–911. doi:10.1016/j.humimm.2011.07.304
  • Cazarez-Navarro G, Palomares-Marín J, Rodríguez-Preciado SY, et al. Association of TAP1 1177A>G and 2090A>G gene polymorphisms with latent tuberculosis infections in sheltered populations, in the metropolitan area of Guadalajara, Mexico: a pilot study. Rev Inst Med Trop Sao Paulo. 2021;63:e55. doi:10.1590/s1678-9946202163055
  • General Assembly of the World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent. 2014;81(3):14–18.
  • World Health Organization. Global Tuberculosis Report 2019 (WHO, 2019). World Health Organization; 2019:283.
  • China NHaFPCotPsRo. Diagnosis for pulmonary tuberculosis (WS 288-2017). Chin J Infect Contr. 2018;17(7):642–652.
  • Commission PsRoCshaFP. Classification of tuberculosis (WS 196-2017). Chin J Infect Contr. 2018;17(04):367–368.
  • Feng ML, Yin B, Shen T, et al. Determination of TAP1 and TAP2 polymorphism in the Chinese Han population by real-time TaqMan polymerase chain reaction. Tissue Antigens. 2008;72(5):441–447. doi:10.1111/j.1399-0039.2008.01121.x
  • Dupont W, Plummer DW. Power and sample size calculations. A review and computer program. Control Clin Trials. 1990;11:116–128. doi:10.1016/0197-2456(90)90005-M
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575. doi:10.1086/519795
  • Lancaster AK, Single RM, Solberg OD, Nelson MP, Thomson G. PyPop update--a software pipeline for large-scale multilocus population genomics. Tissue Antigens. 2007;69(1):192–197. doi:10.1111/j.1399-0039.2006.00769.x
  • Lancaster A, Nelson MP, Meyer D, Single RM, Thomson G. PyPop: a software framework for population genomics: analyzing large-scale multi-locus genotype data. Pac Symp Biocomput. 2003;514–525. doi:10.1142/9789812776303_0048
  • Zhang S, Liu S, Liu N, et al. Polymorphisms in ERAP1 and ERAP2 genes are associated with tuberculosis in the Han Chinese. Front Genet. 2020;11:566190. doi:10.3389/fgene.2020.566190
  • Grotzke JE, Lewinsohn DM. Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect. 2005;7(4):776–788. doi:10.1016/j.micinf.2005.03.001
  • De Libero G, Flesch I, Kaufmann SH. Mycobacteria-reactive Lyt-2+ T cell lines. Eur J Immunol. 1988;18(1):59–66. doi:10.1002/eji.1830180110
  • Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med. 1999;189(12):1973–1980. doi:10.1084/jem.189.12.1973
  • Sousa AO, Mazzaccaro RJ, Russell RG, et al. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A. 2000;97(8):4204–4208. doi:10.1073/pnas.97.8.4204
  • Wang D, Zhou Y, Ji L, et al. Association of LMP/TAP gene polymorphisms with tuberculosis susceptibility in Li population in China. PLoS One. 2012;7(3):e33051. doi:10.1371/journal.pone.0033051
  • Roh EY, Yoon JH, Shin S, Song EY, Park MH. Association of TAP1 and TAP2 genes with susceptibility to pulmonary tuberculosis in Koreans. Apmis. 2015;123(6):457–464. doi:10.1111/apm.12373
  • Naderi M, Hashemi M, Amininia S. Association of TAP1 and TAP2 Gene Polymorphisms with Susceptibility to Pulmonary Tuberculosis. Iran J Allergy Asthma Immunol. 2016;15(1):62–68.
  • Zhang M, Wang X, Zhu Y, Chen S, Chen B, Liu Z. Associations of genetic variants at TAP1 and TAP2 with pulmonary tuberculosis risk among the Chinese population. Epidemiol Infect Mar. 2021;149:e79. doi:10.1017/s0950268821000613
  • Soundravally R, Hoti SL. Polymorphisms of the TAP 1 and 2 gene may influence clinical outcome of primary dengue viral infection. Scand J Immunol. 2008;67(6):618–625. doi:10.1111/j.1365-3083.2008.02109.x
  • Aquino-Galvez A, Camarena A, Montaño M, et al. Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis. Exp Mol Pathol. 2008;84(2):173–177. doi:10.1016/j.yexmp.2008.01.002
  • Shen C, Guo Z, Wu M, et al. Association study between hypertension and A/G polymorphism at codon 637 of the transporter associated with antigen processing 1 gene. Hypertens Res. 2007;30(8):683–690. doi:10.1291/hypres.30.683
  • Shinde V, Marcinek P, Rani DS, et al. Genetic evidence of TAP1 gene variant as a susceptibility factor in Indian leprosy patients. Hum Immunol. 2013;74(6):803–807. doi:10.1016/j.humimm.2013.01.001
  • Powis SH, Tonks S, Mockridge I, Kelly AP, Bodmer JG, Trowsdale J. Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. Immunogenetics. 1993;37(5):373–380. doi:10.1007/bf00216802
  • Gomez LM, Camargo JF, Castiblanco J, Ruiz-Narváez EA, Cadena J, Anaya JM. Analysis of IL1B, TAP1, TAP2 and IKBL polymorphisms on susceptibility to tuberculosis. Tissue Antigens. 2006;67(4):290–296. doi:10.1111/j.1399-0039.2006.00566.x
  • Rajalingam R, Singal DP, Mehra NK. Transporter associated with antigen-processing (TAP) genes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis. Tissue Antigens. 1997;49(2):168–172. doi:10.1111/j.1399-0039.1997.tb02731.x