323
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

NOTCH2, ATIC, MRI1, SLC6A13, ATP13A2 Genetic Variations are Associated with Ventricular Septal Defect in the Chinese Tibetan Population Through Whole-Exome Sequencing

, , , , , , , , , ORCID Icon & show all
Pages 389-400 | Received 11 Jan 2023, Accepted 31 Mar 2023, Published online: 27 Apr 2023

References

  • Clark KL, Yutzey KE, Benson DW. Transcription factors and congenital heart defects. Annu Rev Physiol. 2006;68:97–121. doi:10.1146/annurev.physiol.68.040104.113828
  • Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development. 2010;137(21):3707–3717. doi:10.1242/dev.052001
  • Miyake T. A review of isolated muscular ventricular septal defect. World J Pediat. 2020;16(2):120–128. doi:10.1007/s12519-019-00289-5
  • Dakkak W, Oliver TI. Ventricular septal defect. In: StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC; 2022.
  • González-Andrade F. High altitude as a cause of congenital heart defects: a medical hypothesis rediscovered in Ecuador. High Alt Med Biol. 2020;21(2):126–134. doi:10.1089/ham.2019.0110
  • Li JJ, Liu Y, Xie SY, et al. Newborn screening for congenital heart disease using echocardiography and follow-up at high altitude in China. Int J Cardiol. 2019;274:106–112. doi:10.1016/j.ijcard.2018.08.102
  • García A, Moreno K, Ronderos M, Sandoval N, Caicedo M, Dennis RJ. Differences by altitude in the frequency of congenital heart defects in Colombia. Pediatr Cardiol. 2016;37(8):1507–1515. doi:10.1007/s00246-016-1464-x
  • Han S, Wei CY, Hou ZL, et al. Prevalence of congenital heart disease amongst schoolchildren in Southwest China. Indian Pediatr. 2020;57(2):138–141. doi:10.1007/s13312-020-1731-z
  • Ma LG, Chen QH, Wang YY, et al. Spatial pattern and variations in the prevalence of congenital heart disease in children aged 4–18 years in the Qinghai-Tibetan Plateau. Sci Total Environ. 2018;627:158–165. doi:10.1016/j.scitotenv.2018.01.194
  • Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15(1):30–35. doi:10.1038/ng0197-30
  • Ji L, Hou H, Zhu K, et al. NOTCH1 gene MicroRNA target variation and ventricular septal defect risk. Omics. 2019;23(1):28–35. doi:10.1089/omi.2018.0171
  • Zheng SQ, Chen HX, Liu XC, Yang Q, He GW. Genetic analysis of the CITED2 gene promoter in isolated and sporadic congenital ventricular septal defects. J Cell Mol Med. 2021;25(4):2254–2261. doi:10.1111/jcmm.16218
  • Peng J, Wang Q, Meng Z, et al. A loss-of-function mutation p.T256M in NDRG4 is implicated in the pathogenesis of pulmonary atresia with ventricular septal defect (PA/VSD) and tetralogy of Fallot (TOF). FEBS Open Bio. 2021;11(2):375–385. doi:10.1002/2211-5463.13044
  • Yang Q, Wu F, Mi Y, et al. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif. 2020;53(3):e12764. doi:10.1111/cpr.12764
  • Wang L, Song G, Liu M, et al. MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the Notch signaling pathway. Int J Mol Med. 2016;37(1):47–55. doi:10.3892/ijmm.2015.2399
  • Yang J, Bücker S, Jungblut B, et al. Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc Res. 2012;96(2):276–285. doi:10.1093/cvr/cvs250
  • Varadkar P, Kraman M, Despres D, Ma G, Lozier J, McCright B. Notch2 is required for the proliferation of cardiac neural crest-derived smooth muscle cells. Dev Dynam. 2008;237(4):1144–1152. doi:10.1002/dvdy.21502
  • High FA, Zhang M, Proweller A, et al. An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. J Clin Invest. 2007;117(2):353–363. doi:10.1172/JCI30070
  • McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79(1):169–173. doi:10.1086/505332
  • van den Akker NM, Molin DG, Peters PP, et al. Tetralogy of fallot and alterations in vascular endothelial growth factor-A signaling and notch signaling in mouse embryos solely expressing the VEGF120 isoform. Circ Res. 2007;100(6):842–849. doi:10.1161/01.RES.0000261656.04773.39
  • Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102(10):1169–1181. doi:10.1161/CIRCRESAHA.108.174318
  • Boutchueng-Djidjou M, Collard-Simard G, Fortier S, et al. The last enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the Golgi/endosomes protein network. Mol Cell Proteom. 2015;14(4):1079–1092. doi:10.1074/mcp.M114.047159
  • Li M, Jin C, Xu M, Zhou L, Li D, Yin Y. Bifunctional enzyme ATIC promotes propagation of hepatocellular carcinoma by regulating AMPK-mTOR-S6 K1 signaling. Cell Commun Signal. 2017;15(1):52. doi:10.1186/s12964-017-0208-8
  • Li R, Chen G, Dang Y, et al. Upregulation of ATIC in multiple myeloma tissues based on tissue microarray and gene microarrays. Int J Lab Hematol. 2021;43(3):409–417. doi:10.1111/ijlh.13397
  • Zhu J, Wang M, Hu D. Development of an autophagy-related gene prognostic signature in lung adenocarcinoma and lung squamous cell carcinoma. PeerJ. 2020;8:e8288. doi:10.7717/peerj.8288
  • van der Krogt JA, Bempt MV, Ferreiro JF, et al. Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with the variant RNF213-, ATIC- and TPM3-ALK fusions is characterized by copy number gain of the rearranged ALK gene. Haematologica. 2017;102(9):1605–1616. doi:10.3324/haematol.2016.146571
  • Christensen KE, Deng L, Leung KY, et al. A novel mouse model for genetic variation in 10-formyltetrahydrofolate synthetase exhibits disturbed purine synthesis with impacts on pregnancy and embryonic development. Hum Mol Genet. 2013;22(18):3705–3719. doi:10.1093/hmg/ddt223
  • Bumann M, Djafarzadeh S, Oberholzer AE, et al. Crystal structure of yeast Ypr118w, a methylthioribose-1-phosphate isomerase related to regulatory eIF2B subunits. J Biol Chem. 2004;279(35):37087–37094. doi:10.1074/jbc.M404458200
  • Sunker A, Alkuraya FS. Identification of MRI1, encoding translation initiation factor eIF-2B subunit alpha/beta/delta-like protein, as a candidate locus for infantile epilepsy with severe cystic degeneration of the brain. Gene. 2013;512(2):450–452. doi:10.1016/j.gene.2012.10.063
  • Gunawardhana LP, Baines KJ, Mattes J, Murphy VE, Simpson JL, Gibson PG. Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatr Pulmonol. 2014;49(9):852–862. doi:10.1002/ppul.22930
  • Liu QR, López-Corcuera B, Mandiyan S, Nelson H, Nelson N. Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem. 1993;268(3):2106–2112. doi:10.1016/S0021-9258(18)53968-5
  • Christiansen B, Meinild AK, Jensen AA, Braüner-Osborne H. Cloning and characterization of a functional human gamma-aminobutyric acid (GABA) transporter, human GAT-2. J Biol Chem. 2007;282(27):19331–19341. doi:10.1074/jbc.M702111200
  • Ramirez A, Heimbach A, Gründemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–1191.
  • Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–2650. doi:10.1093/hmg/dds089
  • Estrada-Cuzcano A, Martin S, Chamova T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287–305. doi:10.1093/brain/aww307
  • van Veen S, Martin S, Van den Haute C, et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature. 2020;578(7795):419–424. doi:10.1038/s41586-020-1968-7
  • Grünewald A, Arns B, Seibler P, et al. ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol Aging. 2012;33(8):1843.e1841–1847. doi:10.1016/j.neurobiolaging.2011.12.035
  • Xu Q, Guo H, Zhang X, et al. Hypoxia regulation of ATP13A2 (PARK9) gene transcription. J Neurochem. 2012;122(2):251–259. doi:10.1111/j.1471-4159.2012.07676.x