187
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Novel MYBPC3 Mutations in Indian Population with Cardiomyopathies

ORCID Icon, , , , , , & ORCID Icon show all
Pages 883-893 | Received 17 Mar 2023, Accepted 11 Aug 2023, Published online: 20 Sep 2023

References

  • Previs MJ, Beck Previs S, Gulick J, Robbins J, Warshaw DM. Molecular mechanics of cardiac myosin-binding protein C in native thick filaments. Science. 2012;337(6099):1215–1218. doi:10.1126/science.1223602
  • Daehmlow S, Erdmann J, Knueppel T, et al. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem Biophys Res Commun. 2002;298(1):116–120. doi:10.1016/s0006-291x(02)02374-4
  • Lee KH, Sulbaran G, Yang S, et al. Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proc Natl Acad Sci USA. 2018;115(9):E1991–E2000. doi:10.1073/pnas.1715247115
  • Pfuhl M, Gautel M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J Muscle Res Cell Motil. 2012;33(1):83–94. doi:10.1007/s10974-012-9291-z
  • Barefield D, Sadayappan S. Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J Mol Cell Cardiol. 2010;48(5):866–875. doi:10.1016/j.yjmcc.2009.11.014
  • Gautel M, Zuffardi O, Freiburg A, Labeit S. Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J. 1995;14(9):1952–1960. doi:10.1002/j.1460-2075.1995.tb07187.x
  • Barry M, Hall M. Familial cardiomyopathy. Br Heart J. 1962;24(5):613–624. doi:10.1136/hrt.24.5.613
  • Gerull B, Klaassen S, Brodehl A. The genetic landscape of cardiomyopathies. In: Genetic Causes of Cardiac Disease. Switzerland AG: Springer Nature; 2020:45–91.
  • Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–567. doi:10.1016/j.jacc.2006.09.014
  • Maron BJ, Nichols PF 3rd, Pickle LW, Wesley YE, Mulvihill JJ. Patterns of inheritance in hypertrophic cardiomyopathy: assessment by M-mode and two-dimensional echocardiography. Am J Cardiol. 1984;53(8):1087–1094. doi:10.1016/0002-9149(84)90643-x
  • Alders M, Jongbloed R, Deelen W, et al. The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur Heart J. 2003;24(20):1848–1853. doi:10.1016/s0195-668x(03)00466-4
  • Andersen PS, Havndrup O, Bundgaard H, et al. Genetic and phenotypic characterization of mutations in myosin-binding protein C (MYBPC3) in 81 families with familial hypertrophic cardiomyopathy: total or partial haploinsufficiency. Eur J Hum Genet. 2004;12(8):673–677. doi:10.1038/sj.ejhg.5201190
  • Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–1575. doi:10.1056/NEJM199412083312307
  • Ehlermann P, Weichenhan D, Zehelein J, et al. Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3gene. BMC Med Genet. 2008;9(1):95. doi:10.1186/1471-2350-9-95
  • Erdmann J, Daehmlow S, Wischke S, et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet. 2003;64(4):339–349. doi:10.1034/j.1399-0004.2003.00151.x
  • Frank-Hansen R, Page SP, Syrris P, McKenna WJ, Christiansen M, Andersen PS. Micro-exons of the cardiac myosin binding protein C gene: flanking introns contain a disproportionately large number of hypertrophic cardiomyopathy mutations. Eur J Hum Genet. 2008;16(9):1062–1069. doi:10.1038/ejhg.2008.52
  • Michels VV, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med. 1992;326(2):77–82. doi:10.1056/NEJM199201093260201
  • Nanni L, Pieroni M, Chimenti C, et al. Hypertrophic cardiomyopathy: two homozygous cases with “typical” hypertrophic cardiomyopathy and three new mutations in cases with progression to dilated cardiomyopathy. Biochem Biophys Res Commun. 2003;309(2):391–398. doi:10.1016/j.bbrc.2003.08.014
  • Niimura H, Patton KK, McKenna WJ, et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation. 2002;105(4):446–451. doi:10.1161/hc0402.102990
  • Richard P, Charron P, Carrier L, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227–2232. doi:10.1161/01.CIR.0000066323.15244.54
  • Van Driest SL, Vasile VC, Ommen SR, et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(9):1903–1910. doi:10.1016/j.jacc.2004.07.045
  • Watkins H, Conner D, Thierfelder L, et al. Mutations in the cardiac myosin binding protein–C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434–437. doi:10.1038/ng1295-434
  • Dhandapany PS, Sadayappan S, Xue Y, et al. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet. 2009;41(2):187–191. doi:10.1038/ng.309
  • Rani DS, Nallari P, Priyamvada S, Narasimhan C, Singh L, Thangaraj K. High prevalence of Arginine to Glutamine substitution at 98, 141 and 162 positions in Troponin I (TNNI3) associated with hypertrophic cardiomyopathy among Indians. BMC Med Genet. 2012;13(1):69. doi:10.1186/1471-2350-13-69
  • Gerull B, Gramlich M, Atherton J, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002;30(2):201–204. doi:10.1038/ng815
  • Keller H, Finsterer J, Steger C, et al. Novel c.367_369del LMNA mutation manifesting as severe arrhythmias, dilated cardiomyopathy, and myopathy. Heart Lung. 2012;41(4):382–386. doi:10.1016/j.hrtlng.2011.07.007
  • Brodehl A, Dieding M, Biere N, et al. Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. J Mol Cell Cardiol. 2016;91:207–214. doi:10.1016/j.yjmcc.2015.12.015
  • Gaertner A, Klauke B, Felski E, et al. Cardiomyopathy-associated mutations in the RS domain affect nuclear localization of RBM20. Hum Mutat. 2020;41(11):1931–1943. doi:10.1002/humu.24096
  • Kamisago M, Sharma SD, DePalma SR, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med. 2000;343(23):1688–1696. doi:10.1056/NEJM200012073432304
  • Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–547. doi:10.1038/nrcardio.2013.105
  • Hershberger RE, Lindenfeld J, Mestroni L, et al. Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. J Card Fail. 2009;15(2):83–97. doi:10.1016/j.cardfail.2009.01.006
  • Dhandapany PS, Razzaque MA, Muthusami U, et al. RAF1 mutations in childhood-onset dilated cardiomyopathy. Nat Genet. 2014;46(6):635–639. doi:10.1038/ng.2963
  • Morita H, Larson MG, Barr SC, et al. Single-gene mutations and increased left ventricular wall thickness in the community: the Framingham Heart Study. Circulation. 2006;113(23):2697–2705. doi:10.1161/circulationaha.105.593558
  • Rani DS, Dhandapany PS, Nallari P, Narasimhan C, Thangaraj K. A novel arginine to tryptophan (R144W) mutation in troponin T (cTnT) gene in an Indian multigenerational family with dilated cardiomyopathy (FDCM). PLoS One. 2014;9(7):e101451. doi:10.1371/journal.pone.0101451
  • Rani DS, Vijaya Kumar A, Nallari P, et al. Novel mutations in beta-MYH7 gene in Indian patients with dilated cardiomyopathy. CJC Open. 2022;4(1):1–11. doi:10.1016/j.cjco.2021.07.020
  • Marian AJ. Phenotypic plasticity of sarcomeric protein mutations. J Am Coll Cardiol. 2007;49(25):2427–2429. doi:10.1016/j.jacc.2007.04.016
  • Bashyam MD, Purushotham G, Chaudhary AK, et al. A low prevalence of MYH7/MYBPC3 mutations among familial hypertrophic cardiomyopathy patients in India. Mol Cell Biochem. 2012;360(1–2):373–382. doi:10.1007/s11010-011-1077-x
  • Waldmuller S, Sakthivel S, Saadi AV, et al. Novel deletions in MYH7 and MYBPC3 identified in Indian families with familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2003;35(6):623–636. doi:10.1016/s0022-2828(03)00050-6
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–424. doi:10.1038/gim.2015.30
  • Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–249. doi:10.1038/nmeth0410-248
  • Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–3814. doi:10.1093/nar/gkg509
  • Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42(10):e59. doi:10.1136/jmg.2005.033886
  • Lekanne Deprez RH, Muurling-Vlietman JJ, Hruda J, et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet. 2006;43(10):829–832. doi:10.1136/jmg.2005.040329
  • Gaertner A, Bloebaum J, Brodehl A, et al. The combined human genotype of truncating TTN and RBM20 Mutations is associated with severe and early onset of dilated cardiomyopathy. Genes. 2021;12(6). doi:10.3390/genes12060883
  • Selvi Rani D, Nallari P, Dhandapany PS, et al. Coexistence of digenic mutations in both thin (TPM1) and thick (MYH7) filaments of sarcomeric genes leads to severe hypertrophic cardiomyopathy in a South Indian FHCM. DNA Cell Biol. 2015;34(5):350–359. doi:10.1089/dna.2014.2650
  • Ito K, Patel PN, Gorham JM, et al. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing. Proc Natl Acad Sci USA. 2017;114(29):7689–7694. doi:10.1073/pnas.1707741114
  • Adabag AS, Maron BJ, Appelbaum E, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(14):1369–1374. doi:10.1016/j.jacc.2007.11.071
  • Girolami F, Ho CY, Semsarian C, et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010;55(14):1444–1453. doi:10.1016/j.jacc.2009.11.062
  • Myasnikov R, Brodehl A, Meshkov A, et al. The double mutation DSG2-p. S363X and TBX20-p.D278X is associated with left ventricular non-compaction cardiomyopathy: case report. Int J Mol Sci. 2021;22(13). doi:10.3390/ijms22136775
  • Wang P, Zou Y, Fu C, Zhou X, Hui R. MYBPC3 polymorphism is a modifier for expression of cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2005;329(2):796–799. doi:10.1016/j.bbrc.2005.02.004
  • Liu J, Zhao S, Yu S, et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy. Radiology. 2022;302(2):298–306. doi:10.1148/radiol.2021210914
  • Jurgens SJ, Choi SH, Morrill VN, et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat Genet. 2022;54(3):240–250. doi:10.1038/s41588-021-01011-w
  • Biddinger KJ, Jurgens SJ, Maamari D, et al. Rare and common genetic variation underlying the risk of hypertrophic cardiomyopathy in a national biobank. JAMA Cardiol. 2022;7(7):715–722. doi:10.1001/jamacardio.2022.1061
  • van Velzen HG, Schinkel AFL, Oldenburg RA, et al. Clinical characteristics and long-term outcome of hypertrophic cardiomyopathy in individuals with a MYBPC3 (Myosin-Binding Protein C) founder mutation. Circ Cardiovasc Genet. 2017;10(4). doi:10.1161/circgenetics.116.001660
  • Page SP, Kounas S, Syrris P, et al. Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long-term outcome. Circ Cardiovasc Genet. 2012;5(2):156–166. doi:10.1161/circgenetics.111.960831
  • Xin B, Puffenberger E, Tumbush J, Bockoven JR, Wang H. Homozygosity for a novel splice site mutation in the cardiac myosin-binding protein C gene causes severe neonatal hypertrophic cardiomyopathy. Am J Med Genet A. 2007;143A(22):2662–2667. doi:10.1002/ajmg.a.31981
  • Niimura H, Bachinski LL, Sangwatanaroj S, et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med. 1998;338(18):1248–1257. doi:10.1056/NEJM199804303381802
  • Bonne G, Carrier L, Bercovici J, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):438–440. doi:10.1038/ng1295-438
  • Rottbauer W, Gautel M, Zehelein J, et al. Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. characterization of cardiac transcript and protein. J Clin Invest. 1997;100(2):475–482. doi:10.1172/JCI119555
  • Moolman JA, Reith S, Uhl K, et al. A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation. 2000;101(12):1396–1402. doi:10.1161/01.cir.101.12.1396
  • Carrier L, Bonne G, Bahrend E, et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res. 1997;80(3):427–434. doi:10.1161/01.res.0000435859.24609.b3
  • Ramachandran G, Kumar M, Selvi Rani D, et al. An in-silico analysis of troponin I mutations in hypertrophic cardiomyopathy of Indian origin. PLoS One. 2013;8(8):e70704. doi:10.1371/journal.pone.0070704
  • Rani DS, Nallari P, Dhandapany PS, et al. Cardiac Troponin T (TNNT2) mutations are less prevalent in Indian hypertrophic cardiomyopathy patients. DNA Cell Biol. 2012;31(4):616–624. doi:10.1089/dna.2011.1366
  • Rangaraju A, Rani DS, Satyanarayana M, Calambur N, Swapna N, Nallari P. Genetic variations of alpha-cardiac actin and cardiac muscle LIM protein in hypertrophic cardiomyopathy in South India. Exp Clin Cardiol. 2012;17(1):26–29.
  • Rani DS, Nallari P, Narasimhan C, Thangaraj K. Novel variations in β-myosin heavy-chain gene (β-MYH7) and its association in south Indian women with cardiomyopathies. Ind J Cardio Dis Women. 2019;04(02):072–078. doi:10.1055/s-0039-1694829
  • Rani DS, Veera Subhashini G, Sharadhadevi A, Cyril E, Thangaraj K. A missense mutation (R723H) in the head motor domain of β-MYH7 gene in an Indian HCM patient and phenotypic plasticity. J Clin Cardiol Cardiovasc Interv. 2021;4(17). doi:10.31579/2641-0419/219
  • Rani DS, Nallari P, Rani J, et al. A complete absence of missense mutation in myosin regulatory and essential light chain genes of South Indian hypertrophic and dilated cardiomyopathies. Cardiology. 2018;141(3):156–166. doi:10.1159/000495027