111
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Microarray Expression Profile and Bioinformatic Analysis of Circular RNA in Human Arteriosclerosis Obliterans

, , , , , , , & show all
Pages 913-924 | Received 29 Jul 2023, Accepted 16 Oct 2023, Published online: 24 Oct 2023

References

  • Song P, Rudan D, Zhu Y, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Global Health. 2019;7:e1020–e1030. doi:10.1016/S2214-109X(19)30255-4
  • Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–e743. doi:10.1161/CIR.0000000000000950
  • Hiatt WR, Goldstone J, Smith SC, et al. Atherosclerotic peripheral vascular disease symposium II: nomenclature for vascular diseases. Circulation. 2008;118:2826–2829. doi:10.1161/CIRCULATIONAHA.108.191171
  • Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–533. doi:10.1038/s41586-021-03392-8
  • Ling Y, Zheng Q, Zhu L, et al. Trend analysis of the role of circular RNA in goat skeletal muscle development. BMC Genomics. 2020;21:220. doi:10.1186/s12864-020-6649-2
  • Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–691. doi:10.1038/s41576-019-0158-7
  • Zhao G. Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases. J Med Genet. 2018;55:713–720. doi:10.1136/jmedgenet-2018-105387
  • Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–490. doi:10.1038/s41580-020-0243-y
  • Garikipati VNS, Verma SK, Cheng Z, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 2019;10:4317. doi:10.1038/s41467-019-11777-7
  • Song H, Yang Y, Sun Y, et al. Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation. Mol Ther. 2022;30:915–931. doi:10.1016/j.ymthe.2021.09.017
  • Song H, Xu T, Feng X, et al. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine. 2020;57:102832. doi:10.1016/j.ebiom.2020.102832
  • Xu W, Chao Y, Liang M, et al. CTRP13 mitigates abdominal aortic aneurysm formation via NAMPT1. Mol Ther. 2021;29:324–337. doi:10.1016/j.ymthe.2020.09.009
  • Buchmann GK, Schurmann C, Spaeth M, et al. The hydrogen-peroxide producing NADPH oxidase 4 does not limit neointima development after vascular injury in mice. Redox Biol. 2021;45:102050. doi:10.1016/j.redox.2021.102050
  • Peterss S, Mansour AM, Ross JA, et al. Changing pathology of the thoracic aorta from acute to chronic dissection: literature review and insights. J Am Coll Cardiol. 2016;68:1054–1065. doi:10.1016/j.jacc.2016.05.091
  • Wong KHF, Zucker BE, Wardle BG, et al. Systematic review and narrative synthesis of surveillance practices after endovascular intervention for lower limb peripheral arterial disease. J Vasc Surg. 2022;75:372–380 e315. doi:10.1016/j.jvs.2021.08.062
  • Narula N, Olin JW, Narula N. Pathologic disparities between peripheral artery disease and coronary artery disease. Arterioscler Thromb Vasc Biol. 2020;40:1982–1989. doi:10.1161/ATVBAHA.119.312864
  • Narula N, Dannenberg AJ, Olin JW, et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J Am Coll Cardiol. 2018;72:2152–2163. doi:10.1016/j.jacc.2018.08.002
  • Matsuo Y, Takumi T, Mathew V, et al. Plaque characteristics and arterial remodeling in coronary and peripheral arterial systems. Atherosclerosis. 2012;223:365–371. doi:10.1016/j.atherosclerosis.2012.05.023
  • Dalager S, Falk E, Kristensen IB, Paaske WP. Plaque in superficial femoral arteries indicates generalized atherosclerosis and vulnerability to coronary death: an autopsy study. J Vasc Surg. 2008;47:296–302. doi:10.1016/j.jvs.2007.10.037
  • Ho CY, Shanahan CM. Medial arterial calcification: an overlooked player in peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2016;36:1475–1482. doi:10.1161/ATVBAHA.116.306717
  • Patop IL, Wust S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38:e100836. doi:10.15252/embj.2018100836
  • Yu T, Wang Y, Fan Y, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12:90. doi:10.1186/s13045-019-0776-8
  • Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10:3503–3517. doi:10.7150/thno.42174
  • Gu Y, Ke G, Wang L, et al. Altered expression profile of circular RNAs in the serum of patients with diabetic retinopathy revealed by microarray. Ophthalmic Res. 2017;58:176–184. doi:10.1159/000479156
  • Zheng J, Li Z, Wang T, et al. Microarray expression profile of Circular RNAs in plasma from primary biliary cholangitis patients. Cell Physiol Biochem. 2017;44:1271–1281. doi:10.1159/000485487
  • Wu J, Li J, Liu H, et al. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children. J Clin Lab Anal. 2019;33:e22998. doi:10.1002/jcla.22998
  • Steinberg D. In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis. J Lipid Res. 2013;54:2946–2949. doi:10.1194/jlr.R043414
  • Zhang S, Li L, Chen W, et al. Natural products: the role and mechanism in low-density lipoprotein oxidation and atherosclerosis. Phytother Res. 2021;35:2945–2967. doi:10.1002/ptr.7002
  • Khatana C, Saini NK, Chakrabarti S, et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev. 2020;2020:5245308. doi:10.1155/2020/5245308
  • Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010;9:830–834. doi:10.1016/j.autrev.2010.07.016
  • Gimbrone MA, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–636. doi:10.1161/CIRCRESAHA.115.306301
  • Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297–329. doi:10.1146/annurev.pathol.1.110304.100100
  • Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med. 2021;172:152–166. doi:10.1016/j.freeradbiomed.2021.05.040
  • Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–735. doi:10.1161/CIRCRESAHA.116.309326
  • Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci. 2020;77:2751–2769. doi:10.1007/s00018-020-03453-7
  • Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17:52–63. doi:10.1038/s41569-019-0239-5
  • Peiffer V, Sherwin SJ, Weinberg PD. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res. 2013;99:242–250. doi:10.1093/cvr/cvt044
  • Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19:30. doi:10.1186/s12943-020-1135-7
  • Zhang X, Wang P, Yuan K, et al. Hsa_circ_0024093 accelerates VSMC proliferation via miR-4677-3p/miR-889-3p/USP9X/YAP1 axis in in vitro model of lower extremity ASO. Mol Ther Nucleic Acids. 2021;26:511–522. doi:10.1016/j.omtn.2021.07.026
  • Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19:172. doi:10.1186/s12943-020-01286-3
  • Qadir J, Li F, Yang BB. Circular RNAs modulate Hippo-YAP signaling: functional mechanisms in cancer. Theranostics. 2022;12:4269–4287. doi:10.7150/thno.71708
  • Zhang MW, Zhu ZH, Xia ZK, et al. Comprehensive circRNA-microRNA-mRNA network analysis revealed the novel regulatory mechanism of Trichosporon asahii infection. Mil Med Res. 2021;8:19. doi:10.1186/s40779-021-00311-w
  • Li S, Teng S, Xu J, et al. Microarray is an efficient tool for circRNA profiling. Brief Bioinform. 2019;20:1420–1433. doi:10.1093/bib/bby006
  • Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19:128. doi:10.1186/s12943-020-01246-x