100
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association Between CTSK Gene Polymorphisms and Response to Alendronate Treatment in Postmenopausal Chinese Women with Low Bone Mineral Density

, , , , &
Pages 925-932 | Received 30 Jun 2023, Accepted 16 Oct 2023, Published online: 28 Oct 2023

References

  • Gao C, Xu Y, Li L, et al. Prevalence of osteoporotic vertebral fracture among community-dwelling elderly in Shanghai. Chin Med J. 2019;132(14):1749–1751. doi:10.1097/CM9.0000000000000332
  • National Bureau of Statistics of China. China Statistical Yearbook. China Statistics Press; 2015.
  • The Chinese Medical Association of Osteoporosis and Bone Mineral Disease. Guidelines for the diagnosis and management of primary osteoporosis (2017). Chin J Osteoporos Bone Miner Res. 2019;25(3):281–309.
  • Cremers S, Drake MT, Ebetino FH, Bilezikian JP, Russell RGG. Pharmacology of bisphosphonates. Br J Clin Pharmacol. 2019;85(6):1052–1062. doi:10.1111/bcp.13867
  • Haider IT, Simonian N, Saini AS, Leung FM, Edwards WB, Schnitzer TJ. Open-label clinical trial of alendronate after teriparatide therapy in people with spinal cord injury and low bone mineral density. Spinal Cord. 2019;57(10):832–842. doi:10.1038/s41393-019-0303-3
  • Li M, Zhang Z, Xue Q, et al. Efficacy of generic teriparatide and alendronate in Chinese postmenopausal women with osteoporosis: a prospective study. Arch Osteoporos. 2022;17(1):103. doi:10.1007/s11657-022-01131-8
  • Calvo-Gallego JL, Pivonka P, Ruiz-Lozano R, Martínez-Reina J. Mechanistic PK-PD model of alendronate treatment of postmenopausal osteoporosis predicts bone site-specific response. Front Bioeng Biotechnol. 2022;10:940620. doi:10.3389/fbioe.2022.940620
  • Wang C, Zheng H, He JW, et al. Genetic polymorphisms in the mevalonate pathway affect the therapeutic response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. Pharmacogenomics J. 2015;15(2):158–164. doi:10.1038/tpj.2014.52
  • Zhou PR, Xu XJ, Zhang ZL, et al. SOST polymorphisms and response to alendronate treatment in postmenopausal Chinese women with osteoporosis. Pharmacogenomics. 2015;16(10):1077–1088. doi:10.2217/pgs.15.76
  • Wang JY, Zhou PR, Liu Y, et al. The analysis of DKK1 polymorphisms in relation to skeletal phenotypes and bone response to alendronate treatment in Chinese postmenopausal women. Pharmacogenomics. 2016;17(3):209–217. doi:10.2217/pgs.15.167
  • Zheng H, Wang C, He JW, Fu WZ, Zhang ZL. OPG, RANKL, and RANK gene polymorphisms and the bone mineral density response to alendronate therapy in postmenopausal Chinese women with osteoporosis or osteopenia. Pharmacogenet Genomics. 2016;26(1):12–19. doi:10.1097/FPC.0000000000000181
  • Kafienah WE, Brömme D, Buttle DJ, Croucher LJ, Hollander AP. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Int J Exp Pathol. 1998;331(3):727–732.
  • Dai R, Wu Z, Chu HY, et al. Cathepsin K: the action in and beyond bone. Front Cell Dev Biol. 2020;8:433. doi:10.3389/fcell.2020.00433
  • Troen BR. The regulation of cathepsin K gene expression. Ann N Y Acad Sci. 2006;1068(1):165–172. doi:10.1196/annals.1346.018
  • Yuan J, Gao YS, Liu DL, et al. PINK1-mediated mitophagy contributes to glucocorticoid-induced cathepsin K production in osteocytes. J Orthop Translat. 2022;38:229–240. doi:10.1016/j.jot.2022.11.003
  • Bonnet N, Douni E, Perréard Lopreno G, Besse M, Biver E, Ferrari S. RANKL-induced increase in Cathepsin K levels restricts cortical expansion in a periostin-dependent fashion: a potential new mechanism of bone fragility. J Bone Miner Res. 2021;36(8):1636–1645. doi:10.1002/jbmr.4307
  • Xiong F, Gao J, Li J, et al. Noncanonical and canonical splice sites: a novel mutation at the rare noncanonical splice-donor cut site (IVS4+1A>G) of SEDL causes variable splicing isoforms in X-linked spondyloepiphyseal dysplasia tarda. Eur J Hum Genet. 2009;17(4):510–516. doi:10.1038/ejhg.2008.219
  • Hung CC, Lee CN, Chang CH, et al. Genotyping of the G1138A mutation of the FGFR3 gene in patients with achondroplasia using high-resolution melting analysis. Clin Biochem. 2008;41(3):162–166. doi:10.1016/j.clinbiochem.2007.08.014
  • Kannan P, Hadeefa Begum A, Madhana Priya N, et al. Unravelling the Relacatib activity against the CTSK proteins causing pycnodysostosis: a molecular docking and dynamics approach. J Biomol Struct Dyn. 2023;31:1–12. doi:10.1080/07391102.2023.2218927
  • El-Makawy AI, Ibrahim FM, Mabrouk DM, Abdel-Aziem SH, Sharaf HA, Ramadan MF. Efficiency of turnip bioactive lipids in treating osteoporosis through activation of Osterix and suppression of Cathepsin K and TNF-α signaling in rats. Environ Sci Pollut Res Int. 2020;27(17):20950–20961. doi:10.1007/s11356-020-08540-7
  • Gao G, Zhang ZL, Zhang H, et al. Hip axis length changes in 10,554 males and females and the association with femoral neck fracture. J Clin Densitom. 2008;11(3):360–366. doi:10.1016/j.jocd.2008.04.005
  • Lewiecki EM, Gordon CM, Baim S, et al. International Society for Clinical Densitometry 2007 adult and pediatric official positions. Bone. 2008;43(6):1115–1121. doi:10.1016/j.bone.2008.08.106
  • Cummings SR, Santora AC, Black DM, Russell RGG. History of alendronate. Bone. 2020;137:115411. doi:10.1016/j.bone.2020.115411
  • Wang WJ, Fu WZ, He JW, Wang C, Zhang ZL. Association between SOST gene polymorphisms and response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. Pharmacogenomics J. 2019;19(5):490–498. doi:10.1038/s41397-018-0059-8
  • LaLonde JM, Zhao B, Janson CA, et al. The crystal structure of human procathepsin K. Biochemistry. 1999;38(3):862–869. doi:10.1021/bi9822271
  • Zhu G, Chen W, Tang CY, et al. Knockout and Double Knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Int J Biol Sci. 2022;18(14):5522–5538. doi:10.7150/ijbs.72211
  • Liu F, Zhou ZF, An Y, et al. Effects of cathepsin K on Emdogain-induced hard tissue formation by human periodontal ligament stem cells. J Tissue Eng Regen Med. 2017;11(10):2922–2934. doi:10.1002/term.2195
  • Meier C, Meinhardt U, Greenfield JR, et al. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease. Clin Lab. 2006;52(1–2):1–10.
  • Jahn O, Wex T, Klose S, Kropf S, Adolf D, Piatek S. Cathepsin K in treatment monitoring following intravenous zoledronic acid. Biomed Rep. 2014;2(6):915–917. doi:10.3892/br.2014.360
  • Bautista-Carbajal A, Villanueva-Arriaga RE, Páez-Arenas A, Massó-Rojas F, Frechero Molina N, García-López S. Nitrogen-containing bisphosphonates downregulate Cathepsin K and upregulate annexin V in osteoclasts cultured in vitro. Int J Dent. 2023;2023:2960941. doi:10.1155/2023/2960941
  • Gao LH, Li SS, Yue H, Zhang ZL. Associations of serum Cathepsin K and polymorphisms in CTSK gene with bone mineral density and bone metabolism markers in postmenopausal Chinese women. Front Endocrinol. 2020;11:48. doi:10.3389/fendo.2020.00048
  • Brown JP, Don-Wauchope A, Douville P, Albert C, Vasikaran SD. Current use of bone turnover markers in the management of osteoporosis. Clin Biochem. 2022;109–110:1–10. doi:10.1016/j.clinbiochem.2022.09.002