172
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genome-Wide Identification of lncRNA and mRNA for Diagnosing Type 2 Diabetes in Saudi Arabia

Pages 859-882 | Received 24 Jul 2023, Accepted 06 Sep 2023, Published online: 15 Sep 2023

References

  • Al Saeed MS, Awad NS, El-Tarras AE. Prevalence of some genetic polymorphisms among cardiovascular patients residing at high altitude and sea level. Int J Curr Microbiol App Sci. 2015;4(11):443–449.
  • Fadl MA, Al-Yasi HM, Alsherif EA. Impact of elevation and slope aspect on floristic composition in wadi Elkor, Sarawat Mountain. Saudi J Biol Sci. 2021;11(1):1–10.
  • Ulloa NA, Cook J. Altitude Induced Pulmonary Hypertension. StatPearls; 2020.
  • Ely BR, Lovering AT, Horowitz M, et al. Heat acclimation and cross tolerance to hypoxia: bridging the gap between cellular and systemic responses. Temperature. 2014;1(2):107–114. doi:10.4161/temp.29800
  • Tso E. High-altitude illness. Emerg Med Clin North Am. 1992;10(2):231–247. doi:10.1016/S0733-8627(20)30711-2
  • Mairbäurl H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol. 2013;4:332. doi:10.3389/fphys.2013.00332
  • Clerici C, Planès C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am J Physiol Cell Physiol. 2009;296(3):L267–L274. doi:10.1152/ajplung.90528.2008
  • Hackett PH, Roach RC. High-Altitude Illness. N Engl J Med. 2001;345(2):107–114. doi:10.1056/NEJM200107123450206
  • McGrath C. Highlight: The Epigenetics of Life at 12,000 Ft. Oxford University Press; 2021.
  • Singh D, Bhattarai M. High prevalence of diabetes and impaired fasting glycaemia in urban Nepal. Diab Med. 2003;20(2):170–171. doi:10.1046/j.1464-5491.2003.00829_4.x
  • Sasaki H, Kawasaki T, Ogaki T, et al. The prevalence of diabetes mellitus and impaired fasting glucose/glycaemia (IFG) in suburban and rural Nepal—the communities-based cross-sectional study during the democratic movements in 1990. Diabetes Res Clin Pract. 2005;67(2):167–174. doi:10.1016/j.diabres.2004.06.012
  • Carrasco Piña E, Pérez Bravo F, Ángel Badillo B, et al. Prevalence of Type 2 Diabetes and Obesity in Two Chilean Aboriginal Populations Living in Urban Zones. Soc Medica Santiago; 2004.
  • Okumiya K, Sakamoto R, Kimura Y, et al. Diabetes mellitus and hypertension in elderly highlanders in Asia. J Am Geriatr Soc. 2010;58(6):1193–1195. doi:10.1111/j.1532-5415.2010.02862.x
  • Wagner K-H, Schwingshackl L, Draxler A, et al. Impact of dietary and lifestyle interventions in elderly or people diagnosed with diabetes, metabolic disorders, cardiovascular disease, cancer and micronutrient deficiency on micronuclei frequency–a systematic review and meta-analysis. Mutat Res Rev Mutat Res. 2021;787:108367. doi:10.1016/j.mrrev.2021.108367
  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi:10.1016/j.diabres.2018.02.023
  • Robert AA, Abdulaziz Al Dawish M, Braham R, et al. Type 2 diabetes mellitus in Saudi Arabia: major challenges and possible solutions. Curr Diabetes Rev. 2017;13(1):59–64.
  • Gómez-Peralta F, Abreu C, Cos X, et al. When does diabetes start? Early detection and intervention in type 2 diabetes mellitus. Rev Clin Esp. 2020;220(5):305–314. doi:10.1016/j.rce.2019.12.003
  • Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–149.
  • Kadamkode V, Banerjee G. Micro RNA: an epigenetic regulator of type 2 diabetes. Microrna. 2014;3(2):86–97.
  • Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37. doi:10.3389/fendo.2013.00037
  • Florez JC, Hirschhorn J, Altshuler D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet. 2003;4(1):257–291.
  • Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med. 2016;48(3):e220–e220.
  • Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13(10):679–692.
  • Geach T. Blood-based markers for T2DM. Nat Rev Endocrinol. 2016;12(6):311. doi:10.1038/nrendo.2016.63
  • Bloss CS, Jeste DV, Schork NJ. Genomics for disease treatment and prevention. Psychiatr Clin. 2011;34(1):147–166.
  • Burton H, Jackson C, Abubakar I. The impact of genomics on public health practice. Br Med Bull. 2014;112(1):37.
  • Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777. doi:10.1371/journal.pgen.1003777
  • Gloss BS, Dinger ME. Realizing the significance of noncoding functionality in clinical genomics. Exp Mol Med. 2018;50(8):1–8. doi:10.1038/s12276-018-0087-0
  • Cebola I, Pasquali L. Non-coding genome functions in diabetes 1 2; 2015.
  • Zhang P, Wu W, Chen Q, et al. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16(3):20190027. doi:10.1515/jib-2019-0027
  • López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the development of human diseases. Non-Coding RNA. 2021;7(1):17. doi:10.3390/ncrna7010017
  • May JM, Bylicky M, Chopra S, et al. Long and short non-coding RNA and radiation response: a review. Transl Res. 2021;233:162–179. doi:10.1016/j.trsl.2021.02.005
  • He X, Ou C, Xiao Y, et al. LncRNAs: key players and novel insights into diabetes mellitus. Oncotarget. 2017;8(41):71325. doi:10.18632/oncotarget.19921
  • Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30(8):348–355. doi:10.1016/j.tig.2014.06.001
  • Knauss JL, Sun T. Regulatory mechanisms of long noncoding RNAs in vertebrate central nervous system development and function. Neuroscience. 2013;235:200–214. doi:10.1016/j.neuroscience.2013.01.022
  • Kazemzadeh M, Safaralizadeh R, Orang AV. LncRNAs: emerging players in gene regulation and disease pathogenesis. J Genet. 2015;94(4):771–784. doi:10.1007/s12041-015-0561-6
  • Pastori C, Wahlestedt C. Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol. 2012;9(6):860–870. doi:10.4161/rna.20482
  • Chen D, Sun Q, Cheng X, et al. Genome-wide analysis of long noncoding RNA (lnc RNA) expression in colorectal cancer tissues from patients with liver metastasis. Cancer Med. 2016;5(7):1629–1639. doi:10.1002/cam4.738
  • Sauvageau M, Goff LA, Lodato S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. elife. 2013;2:e01749. doi:10.7554/eLife.01749
  • Sallam T, Sandhu J, Tontonoz P. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res. 2018;122(1):155–166. doi:10.1161/CIRCRESAHA.117.311802
  • Simion V, Haemmig S, Feinberg MW. LncRNAs in vascular biology and disease. Vascul Pharmacol. 2019;114:145–156. doi:10.1016/j.vph.2018.01.003
  • Guo F-X, Wu Q, Li P, et al. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 2019;26(9):1670–1687. doi:10.1038/s41418-018-0235-z
  • Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812–817. doi:10.2337/diabetes.52.3.812
  • Herder C, Brunner EJ, Rathmann W, et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care. 2009;32(3):421–423. doi:10.2337/dc08-1161
  • Koçak MZ, Aktaş G, Erkuş E, et al. Neuregulin-4 is associated with plasma glucose and increased risk of type 2 diabetes mellitus. Swiss Med Wkly. 2019;2019:1.
  • Aktas G, Yilmaz S, Kantarci DB, et al. Is serum uric acid-to-HDL cholesterol ratio elevation associated with diabetic kidney injury? Postgrad Med. 2023;135(5):519–523. doi:10.1080/00325481.2023.2214058
  • Kocak MZ, Aktas G, Erkus E, et al. Serum uric acid to HDL-cholesterol ratio is a strong predictor of metabolic syndrome in type 2 diabetes mellitus. Rev Assoc Med Bras. 2019;65:9–15. doi:10.1590/1806-9282.65.1.9
  • Aktas G, Khalid A, Kurtkulagi O, et al. Poorly controlled hypertension is associated with elevated serum uric acid to HDL-cholesterol ratio: a cross-sectional cohort study. Postgrad Med. 2022;134(3):297–302. doi:10.1080/00325481.2022.2039007
  • Kosekli MA, Kurtkulagii O, Kahveci G, et al. The association between serum uric acid to high density lipoprotein-cholesterol ratio and non-alcoholic fatty liver disease: the abund study. Rev Assoc Med Bras. 2021;67:549–554. doi:10.1590/1806-9282.20201005
  • Aktaş G, Kocak MZ, Duman TT, et al. Mean Platelet Volume (MPV) as an inflammatory marker in type 2 diabetes mellitus and obesity. Bali Med J. 2018;2018:1.
  • Group, IDFGD. Global guideline for type 2 diabetes. Diabetes Res Clin Pract. 2014;104(1):1–52. doi:10.1016/j.diabres.2012.10.001
  • Kim D, Langmead B, Salzberg SL. HISAT: hierarchical indexing for spliced alignment of transcripts. BioRxiv. 2014;2014:012591.
  • Pertea M, Pertea GM, Antonescu CM, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–295. doi:10.1038/nbt.3122
  • Sun L, Luo H, Bu D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166–e166. doi:10.1093/nar/gkt646
  • Punta M, Coggill PC, Eberhardt RY, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40(D1):D290–D301. doi:10.1093/nar/gkr1065
  • Frazee AC, Pertea G, Jaffe AE, et al. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 2015;33(3):243–246. doi:10.1038/nbt.3172
  • Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):1–12. doi:10.1186/gb-2010-11-2-r14
  • Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36(suppl_1):D480–D484. doi:10.1093/nar/gkm882
  • Mao X, Cai T, Olyarchuk JG, et al. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–3793. doi:10.1093/bioinformatics/bti430
  • Gollapalli M, Alansari A, Alkhorasani H, et al. A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: pre-diabetes, T1DM, and T2DM. Comput Biol Med. 2022;147:105757. doi:10.1016/j.compbiomed.2022.105757
  • Al Dawish MA, Robert AA. Diabetes Mellitus in Saudi Arabia: challenges and possible solutions. In: Handbook of Healthcare in the Arab World. Springer; 2021:1083–1100.
  • Leahy JL. Pathogenesis of type 2 diabetes mellitus. Arch Med Res. 2005;36(3):197–209. doi:10.1016/j.arcmed.2005.01.003
  • Kowluru RA, Mohammad G. Epigenetic modifications in diabetes. Metabolism. 2022;126:154920. doi:10.1016/j.metabol.2021.154920
  • Arden K. FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene. 2008;27(16):2345–2350. doi:10.1038/onc.2008.27
  • Dansen TB, Burgering BM. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol. 2008;18(9):421–429. doi:10.1016/j.tcb.2008.07.004
  • Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell. 2007;28(6):941–953. doi:10.1016/j.molcel.2007.10.035
  • Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:1.
  • Behl Y, Krothapalli P, Desta T, et al. FOXO1 plays an important role in enhanced microvascular cell apoptosis and microvascular cell loss in type 1 and type 2 diabetic rats. Diabetes. 2009;58(4):917–925. doi:10.2337/db08-0537
  • Sangwung P, Zhou G, Nayak L, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight. 2017;2(4). doi:10.1172/jci.insight.91700
  • Dekker RJ, Van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood J Am Soc Hematol. 2002;100(5):1689–1698.
  • Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005;96(5):e48–e57. doi:10.1161/01.RES.0000159707.05637.a1
  • Atkins GB, Jain MK. Role of Kruppel-like transcription factors in endothelial biology. Circ Res. 2007;100(12):1686–1695. doi:10.1161/01.RES.0000267856.00713.0a
  • Lee H-Y, Youn S-W, Cho H-J, et al. FOXO1 impairs whereas statin protects endothelial function in diabetes through reciprocal regulation of Krüppel-like factor 2. Cardiovasc Res. 2013;97(1):143–152. doi:10.1093/cvr/cvs283
  • Lee H-Y, Youn SW, Oh BH, et al. Krüppel-like factor 2 suppression by high glucose as a possible mechanism of diabetic vasculopathy. Korean Circ J. 2012;42(4):239–245. doi:10.4070/kcj.2012.42.4.239
  • Bhattacharya R, SenBanerjee S, Lin Z, et al. Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem. 2005;280(32):28848–28851. doi:10.1074/jbc.C500200200
  • Wang H-G, Cao B, Zhang L-X, et al. KLF2 inhibits cell growth via regulating HIF-1α/Notch-1 signal pathway in human colorectal cancer HCT116 cells. Oncol Rep. 2017;38(1):584–590. doi:10.3892/or.2017.5708
  • Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80(2):51.
  • Jensen KS, Binderup T, Jensen KT, et al. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J. 2011;30(22):4554–4570. doi:10.1038/emboj.2011.323
  • Toffoli S, Roegiers A, Feron O, et al. Intermittent hypoxia is an angiogenic inducer for endothelial cells: role of HIF-1. Angiogenesis. 2009;12(1):47–67. doi:10.1007/s10456-009-9131-y
  • Kawanami D, Mahabeleshwar GH, Lin Z, et al. Kruppel-like factor 2 inhibits hypoxia-inducible factor 1α expression and function in the endothelium. J Biol Chem. 2009;284(31):20522–20530. doi:10.1074/jbc.M109.025346
  • Dutto I, Scalera C, Prosperi E. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol Life Sci. 2018;75(8):1325–1338. doi:10.1007/s00018-017-2717-4
  • Wensveen TT, Gašparini D, Rahelić D, et al. Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Res Clin Pract. 2021;172:108637. doi:10.1016/j.diabres.2020.108637
  • Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998;273(32):19925–19928. doi:10.1074/jbc.273.32.19925
  • El-Nasr NMA, Saleh DO, Mahmoud SS, et al. Olmesartan attenuates type 2 diabetes-associated liver injury: cross-talk of AGE/RAGE/JNK, STAT3/SCOS3 and RAS signaling pathways. Eur J Pharmacol. 2020;874:173010. doi:10.1016/j.ejphar.2020.173010
  • Pereira LX, Alves da Silva LC, de Oliveira Feitosa A, et al. Correlation between renin-angiotensin system (RAS) related genes, type 2 diabetes, and cancer: insights from metanalysis of transcriptomics data. Mol Cell Endocrinol. 2019;493:110455. doi:10.1016/j.mce.2019.110455
  • Du X, Li X, Chen L, et al. Hepatic miR‐125b inhibits insulin signaling pathway by targeting PIK3CD. J Cell Physiol. 2018;233(8):6052–6066. doi:10.1002/jcp.26442
  • Liu H-M, Huang Y, Li L, et al. MicroRNA-mRNA expression profiles and functional network of submandibular gland in type 2 diabetic db/db mice. Arch Oral Biol. 2020;120:104947. doi:10.1016/j.archoralbio.2020.104947
  • Du Z, Uversky VN. A comprehensive survey of the roles of highly disordered proteins in type 2 diabetes. Int J Mol Sci. 2017;18(10):2010. doi:10.3390/ijms18102010
  • Yang F, Chen Y, Xue Z, et al. High-throughput sequencing and exploration of the lncRNA-circRNA-miRNA-mRNA network in type 2 diabetes mellitus. Biomed Res Int. 2020;2020:1.
  • Eldakhakhny BM, Al Sadoun H, Choudhry H, et al. In-Silico study of immune system associated genes in case of type-2 diabetes with insulin action and resistance, and/or obesity. Front Endocrinol (Lausanne). 2021;12:641888. doi:10.3389/fendo.2021.641888
  • Kado S, Nagase T, Nagata N. Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus. Acta Diabetol. 1999;36:67–72. doi:10.1007/s005920050147
  • Wu X, Yu T, Ji N, et al. IL6R inhibits viability and apoptosis of pancreatic beta-cells in type 2 diabetes mellitus via regulation by miR-22 of the JAK/STAT signaling pathway. Diabetes Metab Syndr Obes. 2019;Volume 12:1645–1657. doi:10.2147/DMSO.S211700
  • Horsten U, Schmitz-Van de Leur H, Müllberg J, et al. The membrane distal half of gp130 is responsible for the formation of a ternary complex with IL‐6 and the IL‐6 receptor. FEBS Lett. 1995;360(1):43–46. doi:10.1016/0014-5793(95)00053-C
  • Moshapa FT, Riches-Suman K, Palmer TM. Therapeutic targeting of the proinflammatory IL-6-JAK/STAT signalling pathways responsible for vascular restenosis in type 2 diabetes mellitus. Cardiol Res Pract. 2019;2019:1–15. doi:10.1155/2019/9846312
  • Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–287. doi:10.1111/j.1600-065X.2008.00754.x
  • Gornicka AO, Millward C, Croniger C, Larner A. Deficiency of Tyk2 Kinase in Mice Leads to Obesity and Insulin Resistance. Wiley Online Library; 2008.
  • Nagafuchi S, Kamada-Hibio Y, Hirakawa K, et al. TYK2 promoter variant and diabetes mellitus in the Japanese. E Bio Med. 2015;2(7):744–749.
  • Amin S, Parker A, Mann J. ZAP70 in chronic lymphocytic leukaemia. Int J Biochem Cell Biol. 2008;40(9):1654–1658. doi:10.1016/j.biocel.2007.05.016
  • Huang Q, Deng G, Wei R, et al. Comprehensive identification of key genes involved in development of diabetes mellitus-related atherogenesis using weighted gene correlation network analysis. Front Cardiovasc Med. 2020;7:580573. doi:10.3389/fcvm.2020.580573
  • Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med. 2012;18(9):524–533. doi:10.1016/j.molmed.2012.05.007
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. cell. 2012;149(2):274–293. doi:10.1016/j.cell.2012.03.017
  • Rasheed N, Lima TB, Mercaldi GF, et al. C7orf59/LAMTOR4 phosphorylation and structural flexibility modulate Ragulator assembly. FEBS Open Bio. 2019;9(9):1589–1602. doi:10.1002/2211-5463.12700
  • Russell SA, Bashaw GJ. Axon guidance pathways and the control of gene expression. Dev Dyn. 2018;247(4):571–580. doi:10.1002/dvdy.24609
  • Das UN, Rao AA. Gene expression profile in obesity and type 2 diabetes mellitus. Lipids Health Dis. 2007;6:1–19. doi:10.1186/1476-511X-6-35
  • Guo K, Elzinga S, Eid S, et al. Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics. 2019;14(8):766–779. doi:10.1080/15592294.2019.1615352
  • Sherif M. Understanding the Genetic Basis of Diabetes Mellitus and Sensorineural Deafness. UCL (University College London); 2015.
  • Kleinstein SE, McCorrison J, Ahmed A, et al. Transcriptomics of type 2 diabetic and healthy human neutrophils. BMC Immunol. 2021;22(1):1–16. doi:10.1186/s12865-021-00428-6