133
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Pharmacogenomic Analysis of CYP3A5*3 and Tacrolimus Trough Concentrations in Vietnamese Renal Transplant Outcomes

, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 53-64 | Received 04 Oct 2023, Accepted 18 Jan 2024, Published online: 02 Feb 2024

References

  • Nguyen TVA, Nguyen HD, Nguyen TLH, et al. Higher tacrolimus trough levels and time in the therapeutic range are associated with the risk of acute rejection in the first month after renal transplantation. BMC Nephrol. 2023;24(1):131. doi:10.1186/s12882-023-03188-0
  • Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation. 2003;76(8):1233–1235. doi:10.1097/01.TP.0000090753.99170.89
  • Renders L, Frisman M, Ufer M, et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther. 2007;81(2):228–234. doi:10.1038/sj.clpt.6100039
  • Jacobson PA, Oetting WS, Brearley AM, et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation. 2011;91(3):300–308. doi:10.1097/TP.0b013e318200e991
  • Nhung VP, Ton ND, Ha NH. Study of CYP3A5 genetic polymorphism in Vietnamese Kinh ethnic group. Acad J Biol. 2020;42(1):1–13.
  • Xuan NT, Hop VQ, Kien TQ, et al. Frequencies and association of CYP3A5 polymorphism with tacrolimus concentration among renal transplant recipients in Vietnam. Transplant Proc. 2022;54(8):2140–2146. doi:10.1016/j.transproceed.2022.07.009
  • Darwich AS, Polasek TM, Aronson JK, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61(1):225–245. doi:10.1146/annurev-pharmtox-033020-113257
  • Sarasamma S, Gracious N, Nair S, Radhakrishnan R. Pharmacogenomics of CYP3A5 polymorphism: predicting dose-adjusted trough levels of tacrolimus in south Indian renal transplant patients. J Pharmacogenomics Pharmacoproteomics. 2016;7(161):2.
  • Owen JS, Fiedler-Kelly J. Introduction to population pharmacokinetic/pharmacodynamic analysis with nonlinear mixed effects models. In: Chapter 8: Introduction to Model Evaluation. John Wiley & Sons, Inc; 2014:212–217.
  • Methaneethorn J, Lohitnavy M, Onlamai K, Leelakanok N. Predictive Performance of Published Tacrolimus Population Pharmacokinetic Models in Thai Kidney Transplant Patients. Eur J Drug Metab Pharmacokinet. 2022;47(1):105–116. doi:10.1007/s13318-021-00735-8
  • Han N, Yun HY, Hong JY, et al. Prediction of the tacrolimus population pharmacokinetic parameters according to CYP3A5 genotype and clinical factors using NONMEM in adult kidney transplant recipients. Eur J Clin Pharmacol. 2013;69(1):53–63. doi:10.1007/s00228-012-1296-4
  • Zhang HJ, Li DY, Zhu HJ, Fang Y, Liu TS. Tacrolimus population pharmacokinetics according to CYP3A5 genotype and clinical factors in Chinese adult kidney transplant recipients. J Clin Pharm Ther. 2017;42(4):425–432. doi:10.1111/jcpt.12523
  • Woillard JB, de Winter BC, Kamar N, Marquet P, Rostaing L, Rousseau A. Population pharmacokinetic model and Bayesian estimator for two tacrolimus formulations--twice daily Prograf and once daily Advagraf. Br J Clin Pharmacol. 2011;71(3):391–402. doi:10.1111/j.1365-2125.2010.03837.x
  • Zhu W, Xue L, Peng H, et al. Tacrolimus population pharmacokinetic models according to CYP3A5/CYP3A4/POR genotypes in Chinese Han renal transplant patients. Pharmacogenomics. 2018;19(13):1013–1025. doi:10.2217/pgs-2017-0139
  • Ling J, Dong LL, Yang XP, et al. Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica. 2020;50(12):1501–1509. doi:10.1080/00498254.2020.1774682
  • Chauhan PM, Hemani RJ, Solanki ND, et al. A systematic review and meta-analysis recite the efficacy of Tacrolimus treatment in renal transplant patients in association with genetic variants of CYP3A5 gene. Am J Clin Exper Urol. 2023;11(4):275–292.
  • Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogen J. 2020;20(4):553–562. doi:10.1038/s41397-019-0144-7
  • Staatz CE, Willis C, Taylor PJ, Tett SE. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther. 2002;72(6):660–669. doi:10.1067/mcp.2002.129304
  • Antignac M, Barrou B, Farinotti R, Lechat P, Urien S. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br J Clin Pharmacol. 2007;64(6):750–757. doi:10.1111/j.1365-2125.2007.02888.x
  • Brunet M, van Gelder T, Åsberg A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41(3):261–307. doi:10.1097/FTD.0000000000000640
  • Zhao CY, Jiao Z, Mao JJ, Qiu XY. External evaluation of published population pharmacokinetic models of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol. 2016;81(5):891–907. doi:10.1111/bcp.12830