45
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Evaluation of CYP2C19 Genetic Variant and Its Lack of Association with Valproic Acid Plasma Concentrations Among Zhuang and Han Schizophrenia Patients in Guangxi

, , , , , , & show all
Pages 225-236 | Received 04 Jan 2024, Accepted 27 Apr 2024, Published online: 14 May 2024

References

  • White C, Scott R, Paul CL, et al. Pharmacogenomics in the era of personalised medicine. Med J Aust. 2022;217(10):510–513. doi:10.5694/mja2.51759
  • Weinshilboum RM, Wang L. Pharmacogenomics: precision medicine and drug response. Mayo Clin Proc. 2017;92(11):1711–1722. doi:10.1016/j.mayocp.2017.09.001
  • Abbasi J. Getting pharmacogenomics into the clinic. JAMA. 2016;316(15):1533–1535. doi:10.1001/jama.2016.12103
  • Hockings JK, Pasternak AL, Erwin AL, et al. Pharmacogenomics: an evolving clinical tool for precision medicine. Cleve Clin J Med. 2020;87(2):91–99. doi:10.3949/ccjm.87a.19073
  • Cecchin E, Stocco G. Pharmacogenomics and personalized medicine. Genes. 2020;11(6):679. doi:10.3390/genes11060679
  • Scott SA, Sangkuhl K, Shuldiner AR, et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics. 2012;22(2):159–165. doi:10.1097/FPC.0b013e32834d4962
  • Stajnko A, Runkel AA, Kosjek T, et al. Assessment of susceptibility to phthalate and DINCH exposure through CYP and UGT single nucleotide poly- morphisms. Environ Int. 2022;159:107046. doi:10.1016/j.envint.2021.107046
  • Biswas M, Shobana J, Jinda P, et al. Azole antifungals and inter-individual differences in drug metabolism: the role of pharmacogenomics and precision medicine. Expert Opin Drug Metab Toxicol. 2023;19(3):165–174. doi:10.1080/17425255.2023.2203860
  • Jukić MM, Haslemo T, Molden E, et al. Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2087 patients. Am J Psychiatry. 2018;175(5):463–470. doi:10.1176/appi.ajp.2017.17050550
  • Bernal CJ, Aka I, Carroll RJ, et al. CYP2C19 phenotype and risk of proton pump inhibitor-associated infections. Pediatrics. 2019;144(6):e20190857. doi:10.1542/peds.2019-0857
  • Lee CR, Luzum JA, Sangkuhl K, et al. Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin Pharmacol Ther. 2022;112(5):959–967. doi:10.1002/cpt.2526
  • Uppugunduri CR, Daali Y, Desmeules J, et al. Transcriptional regulation of CYP2C19 and its role in altered enzyme activity. Curr Drug Metab. 2012;13(8):1196–1204. doi:10.2174/138920012802850146
  • Hicks JK, Bishop JR, Sangkuhl K, et al.; Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–134. doi:10.1002/cpt.147
  • Hiemke C, Bergemann N, Clement HW, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: 2017 edition. Pract Pharm Clin Remedies. 2022;25(02):97–118. Chinese.
  • Tseng YJ, Huang SY, Kuo CH, et al. Safety range of free valproic acid serum concentration in adult patients. PLoS One. 2020;15(9):e0238201. doi:10.1371/journal.pone.0238201
  • Lin K, Cao VFS, Au C, et al. Clinical pharmacokinetic monitoring of free valproic acid levels: a systematic review. Clin Pharmacokinet. 2022;61(10):1345–1363. doi:10.1007/s40262-022-01171-w
  • Thummel KE, Shen DD. Design and optimization of dosage regimens: pharmacokinetic data. In: Hardman JG, Limbird LE, Gilman AG, editors. Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill; 2001:1917–2023.
  • Song C, Li X, Mao P, et al. Impact of CYP2C19 and CYP2C9 genetic variants on sodium valproate plasma concentration in patients with epilepsy. Eur J Hosp Pharm. 2022;29(4):198–201. doi:10.1136/ejhpharm-2020-002367
  • López-García MA, Feria-Romero IA, Serrano H, et al. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy. Pharmacol Rep. 2017;69(3):504–511. doi:10.1016/j.pharep.2017.01.007
  • Han R, Li Y, Wu W. Effects of CYP2C19 genetic polymorphism on plasma concentration of sodium valproate in epileptic patients. Neural Injury Funct Reconstr. 2015;10:295–297.
  • Wang S, Li J, Song M, et al. Effect of CYP2C19 polymorphisms on serum valproic level acid in Chinese Han patients with schizophrenia. Sci Rep. 2021;11(1):23150. doi:10.1038/s41598-021-02628-x
  • Smith RL, Haslemo T, Refsum H, et al. Impact of age, gender and CYP2C9/2C19 genotypes on dose-adjusted steady-state serum concentrations of valproic acid—a large-scale study based on naturalistic therapeutic drug monitoring data. Eur J Clin Pharmacol. 2016;72(9):1–6. doi:10.1007/s00228-016-2087-0
  • Fricke-Galindo I, Céspedes-Garro C, Rodrigues-Soares F, et al. Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and “measured” metabolic phenotypes across world populations. Pharmacogen J. 2015;16(2):113–123. doi:10.1038/tpj.2015.70
  • He L, Chen S, Li J, et al. Genetic and phenotypic frequency distribution of CYP2C9, CYP2C19 and CYP2D6 in over 3200 Han Chinese. Clin Exp Pharmacol Physiol. 2020;47(10):1659–1663. doi:10.1111/1440-1681.13357
  • Shu Y, Zhou HH. Individual and ethnic differences in CYP2C19 activity in Chinese populations. Zhong Guo Yao Li Xue Bao. 2000;21(3):193–199.
  • Yin SJ, Ni YB, Wang SM, et al. Differences in genotype and allele frequency distributions of polymorphic drug metabolizing enzymes CYP2C19 and CYP2D6 in mainland Chinese Mongolian, Hui and Han populations. J Clin Pharm Therapeutics. 2012;37(3):364–369. doi:10.1111/j.1365-2710.2011.01298.x
  • Ruan FW, Yang WY, Chen XL, et al. Analysis of distribution characteristics of CYP2C19 gene polymorphism in Han nationality patients with coronary heart disease in Dongguan. Lab Med Clinic. 2020;17(3):3. Chinese.
  • Bao Y, Qian FC, Fu TG, et al. Analysis of CYP2C19 gene polymorphism in population of Huzhou area. Chin J Health Lab Technol. 2022;32(19):4. Chinese.
  • Jin SL, Yan HM, Wu Y, et al. Analysis of the relationship between CYP2C19 gene polymorphism and valproic acid metabolism in han Chinese patients with mental illness in Hebei Province. Hebei Med. 2023;29(1):97–102. Chinese.
  • Zuo LJ, Guo T, Xia DY, et al. Allele and Genotype Frequencies of CYP3A4, CYP2C19, and CYP2D6 in Han, Uighur, Hui, and Mongolian Chinese Populations. Genet Test Mol Biomar. 2012;16(2):102–108. doi:10.1089/gtmb.2011.0084
  • Wang SM, Zhu AP, Li D, et al. Frequencies of genotypes and alleles of the functional SNPs in CYP2C19 and CYP2E1 in mainland Chinese Kazakh, Uygur and Han populations. J Hum Genet. 2009;54(6):372–375. doi:10.1038/jhg.2009.41
  • López-Fernández LA. Pharmacogenetics to avoid adverse drug reactions. J Personal Med. 2022;12(2):159. doi:10.3390/jpm12020159
  • Ma WB, Zhang LT, Ren XD, et al. Distribution of CYP2C19 gene polymorphisms in different sex, age and ethnio groups of patients with coronary heart disease in Shaanxi province and a comparative analysis with other areas in China. Int J Lab Med. 2020;41(5):5. Chinese.
  • Li J, Wang YX, Wang HP, et al. Distribution of CYP2C19 polymorphisms in Mongolian and Han nationals and the choice of specific antiplatelet drugs. Int J Clin Pharm. 2017;39(4):791–797. doi:10.1007/s11096-017-0451-5
  • Zhang S, Luo J, Xu Q, et al. Analysis of CYP2C19 gene polymorphism and metabolic phenotype in Alzheimer’s disease patients of Han Nationality in Guizhou. J Mod Lab Med. 2020;35(5):4. Chinese.
  • Huan LJ, Wang PY. Analysis of CYP2C19*2 and *3 locus gene polymorphisms in elderly Han population of Hubei. Int J Lab Med. 2021;42(24):3014–3017. Chinese.
  • Zhang JY, Yang XB, Li Y, et al. Preliminary study on CYP2C19gene polymorphism in patients with coronary heart disease in Yunnan province. Chin J Hospital Pharm. 2021;41(1):4. Chinese.
  • Jiang XR, Zhang YG, Lu J, et al. Distribution of CYP2C19 genetic polymorphisms in a north Chinese Han population with digestive tract diseases. Chin J Clin Exper Pathol. 2016;32(10):5. Chinese.
  • Wang Y, Zhao X, Lin J, et al. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA. 2016;316(1):70–78. doi:10.1001/jama.2016.8662
  • Botton MR, Whirl-Carrillo M, Del Tredici AL, et al. PharmVar GeneFocus: CYP2C19. Clin Pharmacol Ther. 2021;109(2):352–366. doi:10.1002/cpt.1973
  • Guo J, Huo Y, Li F, et al. Impact of gender, albumin, and CYP2C19 polymorphisms on valproic acid in Chinese patients: a population pharmacokinetic model. J Int Med Res. 2020;48(8):300060520952281. doi:10.1177/0300060520952281
  • Wu ZT, Wang GH, Xiao L, et al. Effect of CYP2C19 gene polymorphism on liver function changes induced by high valproic acid dosages in patients with bipolar disorder. Med J Wuhan Univ. 2021;42(01):119–122. Chinese.
  • Ghodke-Puranik Y, Thorn CF, Lamba JK, et al. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genom. 2013;23(4):236–241. doi:10.1097/FPC.0b013e32835ea0b2
  • Inoue K, Suzuki E, Yazawa R, et al. Influence of uridine diphosphate glucuronosyltransferase 2B7 −161C>T polymorphism on the concentration of valproic acid in pediatric epilepsy patients. Therap Drug Monitor. 2014;36(3):406. doi:10.1097/FTD.0000000000000012
  • Karle J, Bolbrinker J, Vogl S, et al. Influence of CYP2D6 genotype on tamoxifen efficacy in advanced breast cancer. Breast Cancer Res Treat. 2014;139(2):553–560. doi:10.1007/s10549-013-2565-3
  • Kiss ÁF, Vaskó D, Déri MT, et al. Combination of CYP2C19 genotype with non-genetic factors evoking phenoconversion improves phenotype prediction. Pharmacol Rep. 2018;70(3):525–532. doi:10.1016/j.pharep.2017.12.001
  • de Jong LM, Boussallami S, Sánchez-López E, et al. The impact of CYP2C19genotype on phenoconversion by concomitant medication. Front Pharmacol. 2023;14:1201906. doi:10.3389/fphar.2023.1201906
  • Miura M, Tada H, Yasui-Furukori N, et al. Enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes in the presence of fluvoxamine. Br J Clin Pharmacol. 2005;60(1):61–68. doi:10.1111/j.1365-2125.2005.02381.x
  • Ohnishi A, Murakami S, Akizuki S, et al. In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease. Clin Pharmacol. 2005;45(11):1221–1229. doi:10.1177/0091270005280787
  • Veringa A, Ter Avest M, Span LF, et al. Voriconazole metabolism is influenced by severe inflammation: a prospective study. Antimicrob Chemother. 2017;72(1):261–267. doi:10.1093/jac/dkw349
  • Shah RR, Smith RL. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 2015;43(3):400. doi:10.1124/dmd.114.061093
  • Stanke-Labesque F, Gautier-Veyret E, Chhun S, et al. Inflammation is a major regulator of drug metabolizing enzymes and transporters: consequences for the personalization of drug treatment. Pharmacol Ther. 2020;215(9):107627. doi:10.1016/j.pharmthera.2020.107627
  • Contreras-Shannon V, Heart DL, Paredes RM, et al. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells. PLoS One. 2013;8(3):e59012. doi:10.1371/journal.pone.0059012
  • Himmerich H, Schönherr J, FuLda S, et al. Impact of antipsychotics on cytokine production in-vitro. J Psychiatr Res. 2011;45(10):1358–1365. doi:10.1016/j.jpsychires.2011.04.009
  • Liao QC, Shi JJ, Zhang Y, et al. Effects of cytochrome P450 isozymes 2A6, 2B6, 2C9 and 2C19 genetic polymorphisms on plasma concentration of sodium valproate. Chin J Neurol. 2013;46(2):82–86. Chinese.
  • Yoon HY, Min HA, Yee J, et al. Influence of CYP2C9 and CYP2A6 on plasma concentrations of valproic acid: a meta-analysis. Eur J Clin Pharmacol. 2020;76(8):1053–1058. doi:10.1007/s00228-020-02872-6
  • Kiang TKL, Ho PC, Reza AM, et al. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci. 2006;94(2):261–271. doi:10.1093/toxsci/kfl096
  • Mei S, Feng W, Zhu L, et al. Effect of CYP2C19, UGT1A8, and UGT2B7 on valproic acid clearance in children with epilepsy: a population pharmacokinetic model. Eur J Clin Pharmacol. 2018;74(8):1029–1036. doi:10.1007/s00228-018-2440-6
  • Song C, Li X, Zhang H, et al. Impact of MDR1 and UGT gene polymorphisms on sodium valproate plasma concentration in patients with epilepsy. Clin Lab. 2022;68(10):326–351. doi:10.7754/Clin.Lab.2022.220101
  • Guo Y, Hu C, He X, et al. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab Pharmacokinet. 2012;27(5):536–542. doi:10.2133/dmpk.DMPK-11-NT-144
  • Liu MX. Pharmacokinetics of Valproic Acid Population and Meta-Analysis of the Effect of CYP2C19 Gene Polymorphism on Valproic Acid Plasma Concentration. Shihezi University; 2020. Chinese.
  • Wang Y, Hu W, Li Z. Influence of age and co-medication on the concentration and efficacy of valproic acid in Chinese epilepsy children. Pak J Pharm Sci. 2020;33(2):537–542.
  • Chen R. Impact of CYP2C19 Genotypes on Serum Concentrations of Valproic Acid in Epileptic Children. Fujian Medical University; 2017. Chinese.
  • Methaneethorn J. A systematic review of population pharmacokinetics of valproic acid. Br J Clin Pharmacol. 2018;84(5):816–834. doi:10.1111/bcp.13510
  • Kalthoff S, Winkler A, Freiberg N, et al. Gender matters: estrogen receptor alpha (ERα) and histone deacetylase (HDAC) 1 and 2 control the gender-specific transcriptional regulation of human uridine diphosphate glucuronosyltransferases genes (UGT1A). J Hepatol. 2013;59(4):797–804. doi:10.1016/j.jhep.2013.05.028
  • Ibarra M, Vázquez M, Fagiolino P, et al. Sex related differences on valproic acid pharmacokinetics after oral single dose. J Pharmacokinet Pharmacodyn. 2013;40(4):479–486. doi:10.1007/s10928-013-9323-3
  • Alqahtani S, Alandas N, Alsultan A. Estimation of apparent clearance of valproic acid in adult Saudi patients. Int J Clin Pharm. 2019;41(4):1056–1061. doi:10.1007/s11096-019-00864-w
  • Usman M, Shaukat QU, Khokhar MI, et al. Comparative pharmacokinetics of valproic acid among Pakistani and South Korean patients: a population pharmacokinetic study. PLoS One. 2022;17(8):e0272622. doi:10.1371/journal.pone.0272622
  • Mani B, Nair P, Sekhar A, et al. CYP2C19 & UGT1A6 genetic polymorphisms and the impact on Valproic acid-induced weight gain in people with epilepsy: prospective genetic association study. Epilepsy Res. 2021;177:106786. doi:10.1016/j.eplepsyres.2021.106786