64
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in Nanomedicines: A Promising Therapeutic Strategy for Ischemic Cerebral Stroke Treatment

ORCID Icon, &
Pages 811-835 | Received 17 Sep 2023, Accepted 25 Jan 2024, Published online: 06 Mar 2024

References

  • Ghaffari A , AkbarfahimiM, RostamiHR. Discriminative factors for post-stroke depression. Asian J. Psychiatr.48, 101863 (2020).
  • Fifield KE , VanderluitJL. Rapid degeneration of neurons in the penumbra region following a small, focal ischemic stroke. Eur. J. Neurosci.52(4), 3196–3214 (2020).
  • Kluge MG , JonesK, KooiOng Let al. Age-dependent disturbances of neuronal and glial protein expression profiles in areas of secondary neurodegeneration post-stroke. Neuroscience393, 185–195 (2018).
  • Chamorro Á , LoEH, RenúA, Van LeyenK, LydenPD. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry92(2), 129–135 (2021).
  • Chen Z , LiuP, XiaX, WangL, LiX. The underlying mechanism of PM2.5-induced ischemic stroke. Environ. Pollut.310, 119827 (2022).
  • Wu Q , YanR, SunJ. Probing the drug delivery strategies in ischemic stroke therapy. Drug Deliv.27(1), 1644–1655 (2020).
  • Kakaletsis N , NtaiosG, MilionisHet al. Time of blood pressure in target range in acute ischemic stroke. J. Hypertens.41(2), 303–309 (2023).
  • Zubair AS , ShethKN. Hemorrhagic conversion of acute ischemic stroke. Neurotherapeutics20(3), 705–711 (2023).
  • Katsanos AH , MalhotraK, GoyalNet al. Intravenous thrombolysis prior to mechanical thrombectomy in large vessel occlusions. Ann. Neurol.86(3), 395–406 (2019).
  • Xu ZH , DengQW, ZhaiQet al. Clinical significance of stroke nurse in patients with acute ischemic stroke receiving intravenous thrombolysis. BMC Neurol.21(1), 359 (2021).
  • Xu Y , ChenD, LiuPet al. A triple fusion tissue-type plasminogen activator (TriF-ΔtPA) enhanced thrombolysis in carotid embolism-induced stroke model. Int. J. Pharm.637, 122878 (2023).
  • Capitanescu C , MacoveiOprescu AM, IonitaDet al. Molecular processes in the streptokinase thrombolytic therapy. J. Enzyme Inhib. Med. Chem.31(6), 1411–1414 (2016).
  • Florova G , DeVera CJ, EmerineRLet al. Targeting the PAI-1 mechanism with a small peptide increases the efficacy of alteplase in a rabbit model of chronic empyema. Pharmaceutics15(5), DOI: 10.3390/pharmaceutics15051498 (2023).
  • Zhang N , LiC, ZhouDet al. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater.70, 227–236 (2018).
  • Zuba V , FuronJ, Bellemain-SagnardMet al. The choroid plexus: a door between the blood and the brain for tissue-type plasminogen activator. Fluids Barriers CNS19(1), 80 (2022).
  • Chen S , ChenD, LiuYet al. Enhanced clot lysis by a single point mutation in a reteplase variant. Br. J. Haematol.196(4), 1076–1085 (2022).
  • Johansen MC , CampbellBCV. ANA Investigates: tenecteplase. Ann. Neurol.90(1), 1–3 (2021).
  • Wang LC , WeiWY, HoPC, WuPY, ChuYP, TsaiKJ. Somatosensory cortical electrical stimulation after reperfusion attenuates ischemia/reperfusion injury of rat brain. Front. Aging Neurosci.13, 741168 (2021).
  • Garden GA , CampbellBM. Glial biomarkers in human central nervous system disease. Glia64(10), 1755–1771 (2016).
  • Gauberti M , LapergueB, DeMartinez Lizarrondo Set al. Ischemia–reperfusion injury after endovascular thrombectomy for ischemic stroke. Stroke49(12), 3071–3074 (2018).
  • Chang CY , ChenJY, WuMH, HuML. Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood–brain barrier and cerebral neuronal apoptosis. Free Radic. Biol. Med.155, 29–36 (2020).
  • Geier EG , ChenEC, WebbAet al. Profiling solute carrier transporters in the human blood–brain barrier. Clin. Pharmacol. Ther.94(6), 636–639 (2013).
  • Latif S , KangYS. Blood–brain barrier solute carrier transporters and motor neuron disease. Pharmaceutics14(10), DOI: 10.3390/pharmaceutics14102167 (2022).
  • Zhang W , SigdelG, MintzKJet al. Carbon dots: a future blood–brain barrier penetrating nanomedicine and drug nanocarrier. Int. J. Nanomed.16, 5003–5016 (2021).
  • Mochizuki T , MizunoT, KurosawaTet al. Functional investigation of solute carrier family 35, member F2, in three cellular models of the primate blood–brain barrier. Drug Metab. Dispos.49(1), 3–11 (2021).
  • Van Lengerich B , ZhanL, XiaDet al. A TREM2-activating antibody with a blood–brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat. Neurosci.26(3), 416–429 (2023).
  • Feng W , ChenY. Chemoreactive nanomedicine. J. Mater. Chem. B8(31), 6753–6764 (2020).
  • Nagase T , KinK, YasuharaT. Targeting neurogenesis in seeking novel treatments for ischemic stroke. Biomedicines11(10), DOI: 10.3390/biomedicines11102773 (2023).
  • Sofias AM , LammersT. Multidrug nanomedicine. Nat. Nanotechnol.18(2), 104–106 (2023).
  • Yu W , YinN, YangYet al. Rescuing ischemic stroke by biomimetic nanovesicles through accelerated thrombolysis and sequential ischemia–reperfusion protection. Acta Biomater.140, 625–640 (2022).
  • Quan X , HanY, LuPet al. Annexin V-modified platelet-biomimetic nanomedicine for targeted therapy of acute ischemic stroke. Adv. Healthc. Mater.11(16), e2200416 (2022).
  • Chen J , JinJ, LiK, ShiL, WenX, FangF. Progresses and prospects of neuroprotective agents-loaded nanoparticles and biomimetic material in ischemic stroke. Front. Cell. Neurosci.16, 868323 (2022).
  • Wu D , ChenQ, ChenX, HanF, ChenZ, WangY. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Target. Ther.8(1), 217 (2023).
  • Guo M , SunX, ChenJ, CaiT. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B11(8), 2537–2564 (2021).
  • Sasson E , AnziS, BellBet al. Nano-scale architecture of blood–brain barrier tight-junctions. eLife10, e63253 (2021).
  • Faria-Pereira A , MoraisVA. Synapses: the brain's energy-demanding sites. Int. J. Mol. Sci.23(7), 3627 (2022).
  • Nguyen YTK , HaHTT, NguyenTH, NguyenLN. The role of SLC transporters for brain health and disease. Cell Mol. Life Sci.79(1), 20 (2021).
  • Grube M , HagenP, JedlitschkyG. Neurosteroid transport in the brain: role of ABC and SLC transporters. Front. Pharmacol.9, 354 (2018).
  • Brenza TM , SchlichtmannBW, BhargavanBet al. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J. Biomed. Mater. Res. A106(11), 2881–2890 (2018).
  • Chen SQ , WangC, TaoS, WangYX, HuFQ, YuanH. Rational design of redox-responsive and p-gp-inhibitory lipid nanoparticles with high entrapment of paclitaxel for tumor therapy. Adv. Healthc. Mater.7(17), e1800485 (2018).
  • Pathan N , ShendeP. Tailoring of P-glycoprotein for effective transportation of actives across blood–brain-barrier. J. Control. Rel.335, 398–407 (2021).
  • Bai X , MoraesTF, ReithmeierRAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol. Membr. Biol.34(1–2), 1–32 (2017).
  • Seo E , JeeB, ChungJHet al. Repression of SLC22A3 by the AR-V7/YAP1/TAZ axis in enzalutamide-resistant castration-resistant prostate cancer. FEBS J.290(6), 1645–1662 (2023).
  • Ullman JC , ArguelloA, GetzJAet al. Brain delivery and activity of a lysosomal enzyme using a blood–brain barrier transport vehicle in mice. Sci. Transl. Med.12(545), DOI: 10.1126/scitranslmed.aay1163 (2020).
  • Zhao Z , UkidveA, KrishnanV, MitragotriS. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev.143, 3–21 (2019).
  • Anand A , SugumaranA, NarayanasamyD. Brain targeted delivery of anticancer drugs: prospective approach using solid lipid nanoparticles. IET Nanobiotechnol.13(4), 353–362 (2019).
  • Du Y , GaoJ, ZhangHet al. Brain-targeting delivery of MMB4 DMS using carrier-free nanomedicine CRT-MMB4@MDZ. Drug Deliv.28(1), 1822–1835 (2021).
  • Chen X , ZhaoY, HeCet al. Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. Int. J. Biol. Macromol.216, 768–778 (2022).
  • Strubbe-Rivera JO , ChenJ, WestBA, ParentKN, WeiGW, BazilJN. Modeling the effects of calcium overload on mitochondrial ultrastructural remodeling. Appl. Sci.11(5), DOI: 10.3390/app11052071 (2021).
  • Wen B , XuK, HuangRet al. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol. Med. Rep.25(5), DOI: 10.3892/mmr.2022.12681 (2022).
  • Collard CD , GelmanS. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology94, 1133–1138 (2001).
  • Yao J , PengH, QiuYet al. Nanoplatform-mediated calcium overload for cancer therapy. J. Mater. Chem. B10(10), 1508–1519 (2022).
  • Gorica E , CalderoneV. Arachidonic acid derivatives and neuroinflammation. CNS Neurol. Disord. Drug Targets21(2), 118–129 (2022).
  • Menezes LB , SegatBB, TolentinoHet al. ROS scavenging of SOD/CAT mimics probed by EPR and reduction of lipid peroxidation in S. cerevisiae and mouse liver, under severe hydroxyl radical stress condition. J. Inorg. Biochem.239, 112062 (2023).
  • Du W , WangJ, ZhouLet al. Transferrin-targeted iridium nanoagglomerates with multi-enzyme activities for cerebral ischemia–reperfusion injury therapy. Acta Biomater.166, 524–535 (2023).
  • Kapoor M , SharmaN, SandhirR, NehruB. Effect of the NADPH oxidase inhibitor apocynin on ischemia–reperfusion hippocampus injury in rat brain. Biomed. Pharmacother.97, 458–472 (2018).
  • Tang X , ZhongW, TuQ, DingB. NADPH oxidase mediates the expression of MMP-9 in cerebral tissue after ischemia–reperfusion damage. Neurol. Res.36(2), 118–125 (2014).
  • Fujii J , OsakiT. Involvement of nitric oxide in protecting against radical species and autoregulation of M1-polarized macrophages through metabolic remodeling. Molecules28(2), DOI: 10.3390/molecules28020814 (2023).
  • Fedotcheva T , ShimanovskyN, FedotchevaN. Specific features of mitochondrial dysfunction under conditions of ferroptosis induced by t-butylhydroperoxide and iron: protective role of the inhibitors of lipid peroxidation and mitochondrial permeability transition pore opening. Membranes13(4), DOI: 10.3390/membranes13040372 (2023).
  • Łukawski K , CzuczwarSJ. Oxidative stress and neurodegeneration in animal models of seizures and epilepsy. Antioxidants12(5), DOI: 10.3390/antiox12051049 (2023).
  • Lee KH , HaSJ, WooJSet al. Exenatide prevents morphological and structural changes of mitochondria following ischaemia–reperfusion injury. Heart Lung Circ.26(5), 519–523 (2017).
  • Peng JF , SalamiOM, HabimanaO, XieYX, YaoH, YiGH. Targeted mitochondrial drugs for treatment of ischemia–reperfusion injury. Curr. Drug Targets23(16), 1526–1536 (2022).
  • Speijer D . How mitochondria showcase evolutionary mechanisms and the importance of oxygen. BioEssays45(6), e2300013 (2023).
  • Yin X , WangJ, YangSet al. SAM50 exerts neuroprotection by maintaining the mitochondrial structure during experimental cerebral ischemia/reperfusion injury in rats. CNS Neurosci. Ther.28(12), 2230–2244 (2022).
  • Monzel AS , EnríquezJA, PicardM. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat. Metab.5(4), 546–562 (2023).
  • Guan X , WeiD, LiangZet al. FDCA attenuates neuroinflammation and brain injury after cerebral ischemic stroke. ACS Chem. Neurosci. DOI: 10.1021/acschemneuro.3c00456 (2023).
  • Wang J , HuZ, YangSet al. Inflammatory cytokines and cells are potential markers for patients with cerebral apoplexy in intensive care unit. Exp. Ther. Med.16, 1014–1020 (2018).
  • Wytrykowska A , Prosba-MackiewiczM, NykaWM. IL-1β, TNF-α, and IL-6 levels in gingival fluid and serum of patients with ischemic stroke. J. Oral Sci.58(4), 509–513 (2016).
  • Yoshida M , KatoN, UemuraTet al. Time dependent transition of the levels of protein-conjugated acrolein (PC-Acro), IL-6 and CRP in plasma during stroke. eNeurologicalSci7, 18–24 (2017).
  • Thammisetty SS , PedragosaJ, WengYC, CalonF, PlanasA, KrizJ. Age-related deregulation of TDP-43 after stroke enhances NF-κB-mediated inflammation and neuronal damage. J. Neuroinflamm.15(1), DOI: 10.1186/s12974-018-1350-y (2018).
  • Chen R , JiangG, LiuYet al. Predictive effects of S100β and CRP levels on hemorrhagic transformation in patients with AIS after intravenous thrombolysis: a concise review based on our center experience. Medicine102(38), DOI: 10.1097/md.0000000000035149 (2023).
  • Zhang D , YuanD, ShenJet al. Up-regulation of VCAM1 relates to neuronal apoptosis after intracerebral hemorrhage in adult rats. Neurochem. Res.40(5), 1042–1052 (2015).
  • Wang D , LiL, ZhangQet al. Combination of electroacupuncture and constraint-induced movement therapy enhances functional recovery after ischemic stroke in rats. J. Mol. Neurosci.71(10), 2116–2125 (2021).
  • Lim S , KimTJ, KimYJ, KimC, KoSB, KimBS. Senolytic therapy for cerebral ischemia–reperfusion injury. Int. J. Mol. Sci.22(21), DOI: 10.3390/ijms222111967 (2021).
  • Liu YS , ZhangGY, HouY. Theoretical and experimental investigation of the antioxidation mechanism of loureirin C by radical scavenging for treatment of stroke. Molecules28(1), DOI: 10.3390/molecules28010380 (2023).
  • Preskorn SH . CNS drug development, lessons learned, part 4: the role of brain circuitry and genes – tasimelteon as an example. J. Psychiatr.23(6), 425–430 (2017).
  • Xiong LL , ChenL, DengIB, ZhouXF, WangTH. P75 neurotrophin receptor as a therapeutic target for drug development to treat neurological diseases. Eur. J. Neurosci.56(8), 5299–5318 (2022).
  • Zhao N , GaoY, JiaH, JiangX. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia–reperfusion injury. Apoptosis28(5–6), 702–729 (2023).
  • Matsuoka Y , YamadaKI. Detection and structural analysis of lipid-derived radicals in vitro and in vivo. Free Radic. Res.55(4), 441–449 (2021).
  • Lee IS , KullmannS, SchefflerK, PreisslH, EnckP. Fat label compared with fat content: gastrointestinal symptoms and brain activity in functional dyspepsia patients and healthy controls. Am. J. Clin. Nutr.108(1), 127–135 (2018).
  • Morita M , NaitoY, ItohY, NikiE. Comparative study on the plasma lipid oxidation induced by peroxynitrite and peroxyl radicals and its inhibition by antioxidants. Free Radic. Res.53(11–12), 1101–1113 (2019).
  • Yoo JY , LeeYJ, KimYJet al. Multiple low-dose radiation-induced neuronal cysteine transporter expression and oxidative stress are rescued by N-acetylcysteine in neuronal SH-SY5Y cells. Neurotoxicology95, 205–217 (2023).
  • Shibuya K , OtaniR, SuzukiYI, KuwabaraS, KiernanMC. Neuronal hyperexcitability and free radical toxicity in amyotrophic lateral sclerosis: established and future targets. Pharmaceuticals15(4), DOI: 10.3390/ph15040433 (2022).
  • Homma T , KobayashiS, SatoH, FujiiJ. Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro. Exp. Cell Res.384(1), 111592 (2019).
  • Fogelholm R , PalomäkiH, EriläT, RissanenA, KasteM. Blood pressure, nimodipine, and outcome of ischemic stroke. Acta Neurol. Scand.109(3), 200–204 (2004).
  • Yu Y , FengJ, LianNet al. Hydrogen gas alleviates blood–brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway. Int. Immunopharmacol.85(106585), 21 (2020).
  • Rao AK , VaidyulaVR, BaggaSet al. Effect of antiplatelet agents clopidogrel, aspirin, and cilostazol on circulating tissue factor procoagulant activity in patients with peripheral arterial disease. Thromb. Haemost.96(6), 738–743 (2006).
  • Zhao Z , MaY, LiuQet al. Effects of different doses of clopidogrel plus early rehabilitation therapy on motor function and inflammatory factors in patients with ischemic stroke. Evid. Based Complement. Alternat. Med.2022, 9692382 (2022).
  • Liu Y , YinY, LuQLet al. Vinpocetine in the treatment of poststroke cognitive dysfunction: a protocol for systematic review and meta-analysis. Medicine98(6), e13685 (2019).
  • Milcan A , ArslanE, BagdatogluOTet al. The effect of alprostadil on ischemia–reperfusion injury of peripheral nerve in rats. Pharmacol. Res.49(1), 67–72 (2004).
  • Li D , ZhaoS, ZhuBet al. Cinepazide maleate promotes recovery from spinal cord injury by inhibiting inflammation and prolonging neuronal survival. Drug Dev. Res.84(4), 736–746 (2023).
  • Zhang J , ZhangX, ShangY, ZhangL. Effect of cinepazide maleate on serum inflammatory factors of ICU patients with severe cerebral hemorrhage after surgery. Evid. Based Complement. Alternat. Med.2021, 6562140 (2021).
  • Li L , LouX, ZhangK, YuF, ZhaoY, JiangP. Hydrochloride fasudil attenuates brain injury in ICH rats. Transl. Neurosci.11(1), 75–86 (2020).
  • Kecskés S , MenyhártÁ, BariF, FarkasE. Nimodipine augments cerebrovascular reactivity in aging but runs the risk of local perfusion reduction in acute cerebral ischemia. Front. Aging Neurosci.15, 1175281 (2023).
  • Yuan LL , ChenTY, HuangZQ. Effects of paroxetine hydrochloride combined with idebenone on inflammatory factors and antioxidant molecules in treatment of depression after ischemic stroke. Pak. J. Med. Sci.39(1), 17–22 (2023).
  • Özalp B , ElbeyH, AydınH, TekkesinMS, UzunH. The effect of coenzyme Q10 on venous ischemia reperfusion injury. J. Surg. Res.204(2), 304–310 (2016).
  • Lu CJ , GuoYZ, ZhangYet al. Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol. Res. Pract.213(9), 1191–1199 (2017).
  • Overgaard K . The effects of citicoline on acute ischemic stroke: a review. J. Stroke Cerebrovasc. Dis.23(7), 1764–1769 (2014).
  • Shavlovskaya OA . The assessment of the efficacy of citicoline in the early and recovery stages of stroke. Zh. Nevrol. Psikhiatr. Im. SS Korsakova116(6), 93–97 (2016).
  • Stein DJ , DanielsWM, SavitzJ, HarveyBH. Brain-derived neurotrophic factor: the neurotrophin hypothesis of psychopathology. CNS Spectr.13(11), 945–949 (2008).
  • Hishiyama S , KotodaM, IshiyamaT, MitsuiK, MatsukawaT. Neuroprotective effects of neurotropin in a mouse model of hypoxic–ischemic brain injury. J. Anesth.33(4), 495–500 (2019).
  • Wang J , SunR, LiZ, PanY. Combined bone marrow stromal cells and oxiracetam treatments ameliorates acute cerebral ischemia/reperfusion injury through TRPC6. Acta Biochim. Biophys Sin.51(8), 767–777 (2019).
  • Ricci S , CelaniMG, CantisaniTA, RighettiE. Piracetam for acute ischaemic stroke. Cochrane Database Syst. Rev.2012(9), CD000419 (2012).
  • Azouz AA , HersiF, AliFEM, HusseinElkelawy AMM, OmarHA. Renoprotective effect of vinpocetine against ischemia/reperfusion injury: modulation of NADPH oxidase/Nrf2, IKKβ/NF-κB p65, and cleaved caspase-3 expressions. J. Biochem. Mol. Toxicol.36(7), e23046 (2022).
  • Ren Y , MaX, WangTet al. The cerebroprotein hydrolysate-I plays a neuroprotective effect on cerebral ischemic stroke by inhibiting MEK/ERK1/2 signaling pathway in rats. Neuropsychiatr. Dis. Treat.17, 2199–2208 (2021).
  • Sui R , ZangL, BaiY. Administration of troxerutin and cerebroprotein hydrolysate injection alleviates cerebral ischemia/reperfusion injury by down-regulating caspase molecules. Neuropsychiatr. Dis. Treat.15, 2345–2352 (2019).
  • Fukuta T , Ikeda-ImafukuM, IwaoY. Development of edaravone ionic liquids and their application for the treatment of cerebral ischemia/reperfusion injury. Mol. Pharm.20(6), 3115–3126 (2023).
  • Schnaar RL . Gangliosides of the vertebrate nervous system. J. Mol. Biol.428(16), 3325–3336 (2016).
  • Li L , Medina-MenéndezC, García-CorzoLet al. SoxD genes are required for adult neural stem cell activation. Cell Rep.38(5), 110313 (2022).
  • Tian Z , ZhaoQ, BiswasS, DengW. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods133, 3–20 (2018).
  • Chiang MC , ChengYC, ChenSJ, YenCH, HuangRN. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Exp. Cell Res.347(2), 322–331 (2016).
  • Shi W , BiS, DaiY, YangK, ZhaoY, ZhangZ. Clobetasol propionate enhances neural stem cell and oligodendrocyte differentiation. Exp. Ther. Med.18(2), 1258–1266 (2019).
  • Vicario N , BernstockJD, SpitaleFMet al. Clobetasol modulates adult neural stem cell growth via canonical Hedgehog pathway activation. Int. J. Mol. Sci.20(8), DOI: 10.3390/ijms20081991 (2019).
  • Lin B , LuL, WangYet al. Nanomedicine directs neuronal differentiation of neural stem cells via silencing long noncoding RNA for stroke therapy. Nano Lett.21(1), 806–815 (2021).
  • Soares R , RibeiroFF, XapelliSet al. Tauroursodeoxycholic acid enhances mitochondrial biogenesis, neural stem cell pool, and early neurogenesis in adult rats. Mol. Neurobiol.55(5), 3725–3738 (2018).
  • Fernandes MB , CostaM, RibeiroMFet al. Reprogramming of lipid metabolism as a new driving force behind tauroursodeoxycholic acid-induced neural stem cell proliferation. Front. Cell. Dev. Biol.8, 335 (2020).
  • Kemp JA , ShimMS, HeoCY, KwonYJ. ‘Combo’ nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev.98, 3–18 (2016).
  • Bilia AR , PiazziniV, GuccioneCet al. Improving on nature: the role of nanomedicine in the development of clinical natural drugs. Planta Med.83(5), 366–381 (2017).
  • Abbasi S , SatoY, KajimotoK, HarashimaH. New design strategies for controlling the rate of hydrophobic drug release from nanoemulsions in blood circulation. Mol. Pharm.17(10), 3773–3782 (2020).
  • Tuguntaev RG , HussainA, FuCet al. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J. Nanobiotechnol.20(1), 236 (2022).
  • Vanden-Hehir S , TippingWJ, LeeM, BruntonVG, WilliamsA, HulmeAN. Raman imaging of nanocarriers for drug delivery. Nanomaterials9(3), DOI: 10.3390/nano9030341 (2019).
  • Sarkar A , FatimaI, JamalQMSet al. Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr. Drug Metab.18(2), 129–137 (2017).
  • Xu XR , CarrimN, NevesMADet al. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J.14(Suppl. 1), 29 (2016).
  • Kim CR , UemuraT, KitagawaS. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev.45(14), 3828–3845 (2016).
  • Malekkhaiat Häffner S , MalmstenM. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv. Colloid Interface Sci.248, 105–128 (2017).
  • Fernandes LF , BruchGE, MassensiniAR, FrézardF. Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front. Neurosci.12, 453 (2018).
  • Vani JR , MohammadiMT, ForoshaniMS, JafariM. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J.15, 378–390 (2016).
  • Zhao M , WangC, XieJ, JiC, GuZ. Eco-friendly and scalable synthesis of fullerenols with high free radical scavenging ability for skin radioprotection. Small17(37), e2102035 (2021).
  • Chanaday NL , NosyrevaE, ShinOHet al. Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron109(8), 1314–1332e5 (2021).
  • Zhao Y , ShenX, MaR, HouY, QianY, FanC. Biological and biocompatible characteristics of fullerenols nanomaterials for tissue engineering. Histol. Histopathol.36(7), 725–731 (2021).
  • Lee HJ , ParkJ, YoonOJet al. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol.6(2), 121–125 (2011).
  • Hassanzadeh P , ArbabiE, AtyabiF, DinarvandR. Nerve growth factor–carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci.179, 15–22 (2017).
  • Künzle M , ManglerJ, LachM, BeckT. Peptide-directed encapsulation of inorganic nanoparticles into protein containers. Nanoscale10(48), 22917–22926 (2018).
  • Gao Y , ChenX, LiuH. A facile approach for synthesis of nano-CeO2 particles loaded co-polymer matrix and their colossal role for blood–brain barrier permeability in cerebral ischemia. J. Photochem. Photobiol. B187, 184–189 (2018).
  • Taslimifar M , FaltysM, KurtcuogluV, VerreyF, MakridesV. Analysis of L-leucine amino acid transporter species activity and gene expression by human blood brain barrier hCMEC/D3 model reveal potential LAT1, LAT4, B0AT2 and y+LAT1 functional cooperation. J. Cereb. Blood Flow Metab.42(1), 90–103 (2022).
  • Daoud WA , XinJH, ZhangYH. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surface Sci.599(1–3), 69–75 (2005).
  • Kim CK , KimT, ChoiIYet al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed.51(44), 11039–11043 (2012).
  • Estevez AY , PritchardS, HarperKet al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic. Biol. Med.51(6), 1155–1163 (2011).
  • Nelson BC , JohnsonME, WalkerML, RileyKR, SimsCM. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants5(2), DOI: 10.3390/antiox5020015 (2016).
  • Teleanu DM , ChircovC, GrumezescuAM, VolceanovA, TeleanuRI. Impact of nanoparticles on brain health: an up to date overview. J. Clin. Med.7(12), DOI: 10.3390/jcm7120490 (2018).
  • Cui J , ChenX, ZhaiXet al. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia–reperfusion injury in rats – a possible new hydrogen resource for clinical use. Neuroscience335, 232–241 (2016).
  • Xie K , WangY, YinLet al. Hydrogen gas alleviates sepsis-induced brain injury by improving mitochondrial biogenesis through the activation of PGC-α in mice. Shock55(1), 100–109 (2021).
  • Li Z , ChenK, ShaoQet al. Nanoparticulate MgH2 ameliorates anxiety/depression-like behaviors in a mouse model of multiple sclerosis by regulating microglial polarization and oxidative stress. Neuroinflammation20(1), 16 (2023).
  • Cruz CCR , DaSilva NP, CastilhoAVet al. Synthesis, characterization and photothermal analysis of nanostructured hydrides of Pd and PdCeO2. Sci. Rep.10(1), 17561 (2020).
  • Zhang D , LiuL, WangJet al. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front. Pharmacol.13, 990505 (2022).
  • Pastorino L , DellacasaE, PetriniP, MonticelliO. Stereocomplex poly(lactic acid) nanocoated chitosan microparticles for the sustained release of hydrophilic drugs. Mater. Sci. Eng. C76, 1129–1135 (2017).
  • Azadmanesh J , BorgstahlGEO. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants7(2), DOI: 10.3390/antiox7020025 (2018).
  • Zhao H , ZhangR, YanX, FanK. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B9(35), 6939–6957 (2021).
  • Reddy MK , LabhasetwarV. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia–reperfusion injury. FASEB J.23(5), 1384–1395 (2009).
  • Petro M , JafferH, YangJ, KabuS, MorrisVB, LabhasetwarV. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain. Biomaterials81, 169–180 (2016).
  • Chen J , ChengD, LiJet al. Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. Drug Dev. Ind. Pharm.39(2), 197–204 (2013).
  • Mitragotri S , BurkePA, LangerR. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov.13(9), 655–672 (2014).
  • Andonova V , PenevaP. Characterization methods for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Curr. Pharm. Des. doi:10.2174/1381612823666171115105721 (2017) ( Epub ahead of print).
  • Partoazar A , NasoohiS, RezayatSMet al. Nanoliposome containing cyclosporine A reduced neuroinflammation responses and improved neurological activities in cerebral ischemia/reperfusion in rat. Fundam. Clin. Pharmacol.31(2), 185–193 (2017).
  • Smoleński M , KarolewiczB, GołkowskaAM, NartowskiKP, Małolepsza-JarmołowskaK. Emulsion-based multicompartment vaginal drug carriers: from nanoemulsions to nanoemulgels. Int. J. Mol. Sci.22(12), DOI: 10.3390/ijms22126455 (2021).
  • Elzayat A , Adam-CerveraI, Álvarez-BermúdezO, Muñoz-EspíR. Nanoemulsions for synthesis of biomedical nanocarriers. Colloids Surf. B203, 111764 (2021).
  • Singh Y , MeherJG, RavalKet al. Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Rel.252, 28–49 (2017).
  • Burger C , ShahzadY, BrummerA, GerberM, DuPlessis J. Traversing the skin barrier with nano-emulsions. Curr. Drug Deliv.4(4), 458–472 (2017).
  • Yadav S , GandhamSK, PanicucciR, AmijiMM. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNF-α siRNA in prevention of experimental neuroinflammation. Nanomedicine2(4), 987–1002 (2016).
  • Azambuja JH , SchuhRS, MichelsLRet al. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: a new therapeutical approach. Mol. Neurobiol.57(2), 635–649 (2020).
  • Ghosh B , BiswasS. Polymeric micelles in cancer therapy: state of the art. J. Control. Rel.332, 127–147 (2021).
  • Kotta S , AldawsariHM, Badr-EldinSM, NairAB, YtK. Progress in polymeric micelles for drug delivery applications. Pharmaceutics14(8), DOI: 10.3390/pharmaceutics14081636 (2022).
  • Jin GW , RejinoldNS, ChoyJH. Multifunctional polymeric micelles for cancer therapy. Polymers14(22), DOI: 10.3390/polym14224839 (2022).
  • Okamura K , TsubokawaT, JohshitaH, MiyazakiH, ShiokawaY. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia. Neurol. Res.36(1), 65–69 (2014).
  • Higashi Y . Edaravone for the treatment of acute cerebral infarction: role of endothelium-derived nitric oxide and oxidative stress. Expert Opin. Pharmacother.10(2), 323–331 (2009).
  • Le Guyader G , DoB, RietveldIBet al. Mixed polymeric micelles for rapamycin skin delivery. Pharmaceutics14(3), DOI: 10.3390/pharmaceutics14030569 (2022).
  • Shin YB , ChoiJY, ShinDH, LeeJW. Anticancer evaluation of methoxy poly(ethylene glycol)-b-poly(caprolactone) polymeric micelles encapsulating fenbendazole and rapamycin in ovarian cancer. Int. J. Nanomed.8, 2209–2223 (2023).
  • Jelonek K , LiS, KaczmarczykBet al. Multidrug PLA-PEG filomicelles for concurrent delivery of anticancer drugs – the influence of drug–drug and drug–polymer interactions on drug loading and release properties. Int. J. Pharm.510(1), 365–374 (2016).
  • Cheng CC , LiangMC, LiaoZS, HuangJJ, LeeDJ. Self-assembled supramolecular nanogels as a safe and effective drug delivery vector for cancer therapy. Macromol. Biosci.17(5), DOI: 10.1002/mabi.201600370 (2017).
  • Mura P . Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: a review. Int. J. Pharm.579, 119181 (2020).
  • Luo T , WangJ, HaoSet al. Brain drug delivery systems for the stroke intervention and recovery. Curr. Pharm. Des.23(15), 2258–2267 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.