706
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Neutrophil and Endothelial Cell Membranes Coassembled Roflumilast Nanoparticles Attenuate Myocardial Ischemia/Reperfusion Injury

, , , , , , & ORCID Icon show all
Pages 779-797 | Received 27 Oct 2023, Accepted 22 Jan 2024, Published online: 01 Mar 2024

References

  • Reed GW , RossiJE, CannonCP. Acute myocardial infarction. Lancet389(10065), 197–210 (2017).
  • Yeh RW , SidneyS, ChandraM, SorelM, SelbyJV, GoAS. Population trends in the incidence and outcomes of acute myocardial infarction. N. Engl. J. Med.362(23), 2155–2165 (2010).
  • Salari N , MorddarvanjoghiF, AbdolmalekiAet al. The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc. Disord.23(1), 206 (2023).
  • Dyrbus K , GasiorM, DesperakP, OsadnikT, NowakJ, BanachM. The prevalence and management of familial hypercholesterolemia in patients with acute coronary syndrome in the Polish tertiary centre: results from the TERCET registry with 19,781 individuals. Atherosclerosis288, 33–41 (2019).
  • Wan Q , XuC, ZhuLet al. Targeting PDE4B (phosphodiesterase-4 subtype B) for cardioprotection in acute myocardial infarction via neutrophils and microcirculation. Circ. Res.131(5), 442–455 (2022).
  • Davidson SM , FerdinandyP, AndreadouIet al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J. Am. Coll. Cardiol.73(1), 89–99 (2019).
  • Heusch G . Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol.17(12), 773–789 (2020).
  • Deftereos S , GiannopoulosG, AngelidisCet al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation132(15), 1395–1403 (2015).
  • Garcia-Prieto J , Villena-GutierrezR, GomezMet al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun.8, 14780 (2017).
  • Kolb M , CrestaniB, MaherTM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur. Respir. Rev.32(167), (2023).
  • Halpin DMG , CrinerGJ, PapiAet al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD Science Committee report on COVID-19 and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.203(1), 24–36 (2021).
  • Rabe KF . Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br. J. Pharmacol.163(1), 53–67 (2011).
  • Xu B , XuJ, CaiNet al. Roflumilast prevents ischemic stroke-induced neuronal damage by restricting GSK3beta-mediated oxidative stress and IRE1alpha/TRAF2/JNK pathway. Free Radic. Biol. Med.163, 281–296 (2021).
  • Kwak HJ , ParkKM, ChoiHE, ChungKS, LimHJ, ParkHY. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell. Signal.20(5), 803–814 (2008).
  • Liao B , HanZ. Roflumilast reduces myocardial ischemia reperfusion injury in vivo and in vitro by activating the AMPK signaling pathway. Exp. Ther. Med.25(6), 302 (2023).
  • Bhat A , RayB, MahalakshmiAMet al. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol. Res.160, 105078 (2020).
  • Kim M , LeeJH, NamJM. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci. (Weinh.)6(17), 1900471 (2019).
  • Feng X , XuW, LiZ, SongW, DingJ, ChenX. Immunomodulatory nanosystems. Adv. Sci. (Weinh.)6(17), 1900101 (2019).
  • Wang D , WangS, ZhouZet al. White blood cell membrane-coated nanoparticles: recent development and medical applications. Adv. Healthc. Mater.11(7), e2101349 (2022).
  • Dash P , PirasAM, DashM. Cell membrane coated nanocarriers – an efficient biomimetic platform for targeted therapy. J. Control. Rel.327, 546–570 (2020).
  • Zhao L , SethA, WibowoNet al. Nanoparticle vaccines. Vaccine32(3), 327–337 (2014).
  • Mitchell MJ , BillingsleyMM, HaleyRM, WechslerME, PeppasNA, LangerR. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov.20(2), 101–124 (2021).
  • Liu Y , LuoJ, ChenX, LiuW, ChenT. Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett.11(1), 100 (2019).
  • Oroojalian F , BeygiM, BaradaranB, MokhtarzadehA, ShahbaziMA. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small17(12), e2006484 (2021).
  • Fang RH , GaoW, ZhangL. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol.20(1), 33–48 (2023).
  • Jan N , MadniA, KhanSet al. Biomimetic cell membrane-coated poly(lactic-co-glycolic acid) nanoparticles for biomedical applications. Bioeng. Transl. Med.8(2), e10441 (2023).
  • Fang RH , HuCM, LukBTet al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett.14(4), 2181–2188 (2014).
  • Algar WR , HildebrandtN, VogelSS, MedintzIL. FRET as a biomolecular research tool – understanding its potential while avoiding pitfalls. Nat. Methods16(9), 815–829 (2019).
  • Stahelin RV . Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Mol. Biol. Cell24(7), 883–886 (2013).
  • Lostao A , LimK, PallaresMC, PtakA, MarcuelloC. Recent advances in sensing the inter-biomolecular interactions at the nanoscale – a comprehensive review of AFM-based force spectroscopy. Int. J. Biol. Macromol.238, 124089 (2023).
  • Prabhu SD , FrangogiannisNG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res.119(1), 91–112 (2016).
  • Kelly M , HwangJM, KubesP. Modulating leukocyte recruitment in inflammation. J. Allergy Clin. Immunol.120(1), 3–10 (2007).
  • Han D , WangF, QiaoZet al. Neutrophil membrane-camouflaged nanoparticles alleviate inflammation and promote angiogenesis in ischemic myocardial injury. Bioact. Mater.23, 369–382 (2023).
  • Visweswaran GR , GholizadehS, RuitersMH, MolemaG, KokRJ, KampsJA. Targeting rapamycin to podocytes using a vascular cell adhesion molecule-1 (VCAM-1)-harnessed SAINT-based lipid carrier system. PLOS ONE10(9), e0138870 (2015).
  • Fang RH , JiangY, FangJC, ZhangL. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials128, 69–83 (2017).
  • Wang Y , ZhangK, LiTet al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics11(1), 164–180 (2021).
  • Li Y , CheJ, ChangLet al. CD47- and integrin alpha4/beta1-comodified-macrophage-membrane-coated nanoparticles enable delivery of colchicine to atherosclerotic plaque. Adv. Healthc. Mater.11(4), e2101788 (2022).
  • Zhuang J , FangRH, ZhangL. Preparation of particulate polymeric therapeutics for medical applications. Small Methods1(9), (2017).
  • Hu CM , FangRH, WangKCet al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature526(7571), 118–121 (2015).
  • Che J , SunL, ShanJet al. Artificial lipids and macrophage membranes coassembled biomimetic nanovesicles for antibacterial treatment. Small18(26), e2201280 (2022).
  • Pan T , SunS, ChenYet al. Immune effects of PI3K/Akt/HIF-1alpha-regulated glycolysis in polymorphonuclear neutrophils during sepsis. Crit. Care26(1), 29 (2022).
  • Zhao J , LiuZ, ChangZ. Lipopolysaccharide induces vascular endothelial cell pyroptosis via the SP1/RCN2/ROS signaling pathway. Eur. J. Cell Biol.100(4), 151164 (2021).
  • Dong X , GaoJ, ZhangCY, HayworthC, FrankM, WangZ. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano13(2), 1272–1283 (2019).
  • Zhang Q , DehainiD, ZhangYet al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol.13(12), 1182–1190 (2018).
  • Park JH , JiangY, ZhouJet al. Genetically engineered cell membrane-coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Sci. Adv.7(25), (2021).
  • Arslan F , DeKleijn DP, PasterkampG. Innate immune signaling in cardiac ischemia. Nat. Rev. Cardiol.8(5), 292–300 (2011).
  • Frantz S , BauersachsJ, ErtlG. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc. Res.81(3), 474–481 (2009).
  • Frangogiannis NG . Regulation of the inflammatory response in cardiac repair. Circ. Res.110(1), 159–173 (2012).
  • Sreejit G , Abdel-LatifA, AthmanathanBet al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation141(13), 1080–1094 (2020).
  • Jiang Q , LiuY, GuoRet al. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials192, 292–308 (2019).
  • Deanfield JE , HalcoxJP, RabelinkTJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation115(10), 1285–1295 (2007).
  • Filippi MD . Neutrophil transendothelial migration: updates and new perspectives. Blood133(20), 2149–2158 (2019).
  • Xu M , QiY, LiuG, SongY, JiangX, DuB. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS Nano17(21), 20825–20849 (2023).
  • Meyer RA , SunshineJC, GreenJJ. Biomimetic particles as therapeutics. Trends Biotechnol.33(9), 514–524 (2015).
  • Han Y , ZhaoR, XuF. Neutrophil-based delivery systems for nanotherapeutics. Small14(42), e1801674 (2018).
  • Chae HJ , SoHS, ChaeSWet al. Sodium nitroprusside induces apoptosis of H9C2 cardiac muscle cells in a c-Jun N-terminal kinase-dependent manner. Int. Immunopharmacol.1(5), 967–978 (2001).
  • Bonato JM , DeMattos BA, OliveiraDV, MilaniH, PrickaertsJ, DeOliveira RMW. Blood–brain barrier rescue by roflumilast after transient global cerebral ischemia in rats. Neurotox. Res.41(4), 311–323 (2023).
  • Refaie MMM , FouliGaber Ibrahim M, FawzyMAet al. Molecular mechanisms mediate roflumilast protective effect against isoprenaline-induced myocardial injury. Immunopharmacol. Immunotoxicol.45(6), 650–662 (2023).