59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanoparticles Integrated with Mild Photothermal Therapy and Oxaliplatin for Tumor cHemotherapy and Immunotherapy

, , , & ORCID Icon
Pages 841-854 | Received 15 Nov 2023, Accepted 30 Jan 2024, Published online: 04 Mar 2024

References

  • Li Z , LaiX , FuSet al. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv. Sci.9(22), 2201734 (2022).
  • Ahmed A , TaitSWG. Targeting immunogenic cell death in cancer. Mol. Oncol. 14(12), 2994–3006 (2020).
  • Birmpilis AI , PaschalisA , MourkakisAet al. Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells11(9), 1415 (2022).
  • Chiaravalli M , SpringA , AgostiniA , PiroG , CarboneC , TortoraG. Immunogenic cell death: an emerging target in gastrointestinal cancers. Cells11(19), 3033 (2022).
  • Vaes RDW , HendriksLEL , VooijsM , DeRuysscher D. Biomarkers of radiotherapy-induced immunogenic cell death. Cells10(4), 930 (2021).
  • Zhou J , WangG , ChenY , WangH , HuaY , CaiZ. Immunogenic cell death in cancer therapy: present and emerging inducers. J. Cell. Mol. Med. 23(8), 4854–4865 (2019).
  • Dussol A , JolyM , VercheratCet al. Gemcitabine and oxaliplatin or alkylating agents for neuroendocrine tumors: comparison of efficacy and search for predictive factors guiding treatment choice. Cancer121(19), 3428–3434 (2015).
  • Zaniboni A , MeriggiF. The emerging role of oxaliplatin in the treatment of gastric cancer. J. Chemother.17(6), 656–662 (2005).
  • Zhou W , ZhouY , ChenXet al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials268, 120546 (2021).
  • Liu P , ChenJ , ZhaoLet al. PD-1 blockade synergizes with oxaliplatin-based, but not cisplatin-based, chemotherapy of gastric cancer. Oncoimmunology11(1), 2093518 (2022).
  • Hoff PM , SaadED , CostaFet al. Literature review and practical aspects on the management of oxaliplatin-associated toxicity. Clin. Colorectal Cancer11(2), 93–100 (2012).
  • Wei G , GuZ , GuJet al. Platinum accumulation in oxaliplatin-induced peripheral neuropathy. J. Peripher. Nerv. Sys.26(1), 35–42 (2021).
  • Zhang C , XuC , GaoX , YaoQ. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics12(5), 2115–2132 (2022).
  • Paraskar A , SoniS , RoyB , PapaA-L , SenguptaS. Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy. Nanotechnology23(7), 75103 (2012).
  • Limagne E , ThibaudinM , NuttinLet al. Trifluridine/tipiracil plus oxaliplatin improves PD-1 blockade in colorectal cancer by inducing immunogenic cell death and depleting macrophages. Cancer Immunol. Res.7(12), 1958–1969 (2019).
  • Papageorgopoulou C , NikolakopoulosK , SeretisC. Hyperthermic intraperitoneal chemotherapy with mitomycin C versus oxaliplatin after cytoreductive surgery for the treatment of peritoneal metastases of colorectal cancer origin. Chirurgia (Bucur)117(3), 266–277 (2022).
  • Zhi D , YangT , O’HaganJ , ZhangS , DonnellyRF. Photothermal therapy. J. Control. Rel.325, 52–71 (2020).
  • Shang T , YuX , HanS , YangB. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater. Sci.8(19), 5241–5259 (2020).
  • Luo H , WangQ , DengYet al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater. 27(39), 1702834 (2017).
  • Yang Y , ZhuW , DongZet al. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater.29(40), 1703588 (2017).
  • You C , LiY , DongYet al. Low-temperature trigger nitric oxide nanogenerators for enhanced mild photothermal therapy. ACS Biomater. Sci. Eng.6(3), 1535–1542 (2020).
  • Liu Y , AiK , LuL. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev.114(9), 5057–5115 (2014).
  • Lv L , ChengH , WangZet al. ’Carrier-drug’ layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy. Nanoscale14(37), 13740–13754 (2022).
  • Huang S , LiangN , HuY , ZhouX , AbidiN. Polydopamine-assisted surface modification for bone biosubstitutes. Biomed. Res. Int. 2016, 2389895 (2016).
  • Geng S , FengQ , WangCet al. A versatile PDA(DOX) nanoplatform for chemo-photothermal synergistic therapy against breast cancer and attenuated doxorubicin-induced cardiotoxicity. J. Nanobiotechnol.21(1), 338 (2023).
  • Jin A , WangY , LinK , JiangL. Nanoparticles modified by polydopamine: working as ’drug’ carriers. Bioact. Mater.5(3), 522–541 (2020).
  • Ullah A , ShinG , LimSI. Human serum albumin binders: a piggyback ride for long-acting therapeutics. Drug Discov. Today28(10), 103738 (2023).
  • Ma J , YangB , HuX , GaoY , QinC. The binding mechanism of benzophenone-type UV filters and human serum albumin: the role of site, number, and type of functional group substitutions. Environ. Pollut. 324, 121342 (2023).
  • Obara S , NakaneK , FujimuraC , TomoshigeS , IshikawaM , SatoS. Functionalization of human serum albumin by tyrosine click. Int. J. Mol. Sci. 22(16), 8676 (2021).
  • Kianfar E . Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnol.19(1), 159 (2021).
  • Spada A , EmamiJ , TuszynskiJA , LavasanifarA. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm.18(5), 1862–1894 (2021).
  • Ruan C , LiuL , LuYet al. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm. Sin. B8(1), 85–96 (2018).
  • Miele E , SpinelliGP , MieleE , TomaoF , TomaoS. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomed.4, 99–105 (2009).
  • Handali S , MoghimipourE , RezaeiM , SaremyS , DorkooshFA. Co-delivery of 5-fluorouracil and oxaliplatin in novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid)/poly(lactic-co-glycolic acid) nanoparticles for colon cancer therapy. Int. J. Biol. Macromol. 124, 1299–1311 (2019).
  • Kepp O , SenovillaL , VitaleIet al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology3(9), 955691 (2014).
  • Sheikholeslami B , LamNW , DuaK , HaghiM. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci.300, 120574 (2022).
  • Senior JH . Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst.3(2), 123–193 (1987).
  • Zhang C , ZhaoX , GuoS , LinT , GuoH. Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles. Int. J. Nanomed.12, 1827–1840 (2017).
  • Zhang P , XuQ , LiX , WangY. pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery. Mater. Sci. Eng. C Mater. Biol. Appl.108, 110396 (2020).
  • Fan S , LinW , HuangYet al. Advances and potentials of polydopamine nanosystem in photothermal-based antibacterial infection therapies. Front. Pharmacol.13, 829712 (2022).
  • Nawaz FZ , KipreosET. Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol. Metab.33(3), 159–174 (2022).
  • Choi PS , LeeJY , ParkJH , KimSW. Synthesis and evaluation of (68) Ga-HBED-CC-EDBE-folate for positron-emission tomography imaging of overexpressed folate receptors on CT26 tumor cells. J. Labelled Comp. Radiopharm.61(1), 4–10 (2018).
  • Jiang M , ZengJ , ZhaoLet al. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. Nanoscale13(41), 17218–17235 (2021).
  • Mukhopadhaya A , MendeckiJ , DongXet al. Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity. Cancer Res.67(16), 7798–7806 (2007).
  • Frey B , WeissE-M , RubnerYet al. Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperthermia28(6), 528–542 (2012).
  • Marteau F , GonzalezNS , CommuniD , GoldmanM , BoeynaemsJ-M , CommuniD. Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood106(12), 3860–3866 (2005).
  • Schnurr M , ToyT , StoitznerPet al. ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood102(2), 613–620 (2003).
  • Sun J , MuH , DaiK , YiL. Calreticulin: a potential anti-cancer therapeutic target. Pharmazie72(9), 503–510 (2017).
  • Zhai J , GuX , LiuY , HuY , JiangY , ZhangZ. Chemotherapeutic and targeted drugs-induced immunogenic cell death in cancer models and antitumor therapy: an update review. Front. Pharmacol. 141152934 (2023).
  • Sprooten J , LaureanoRS , VanmeerbeekIet al. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology12(1), 2219591 (2023).
  • Langer K , AnhornMG , SteinhauserIet al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm.347(1–2), 109–117 (2008).
  • Lei C , LiuX-R , ChenQ-Bet al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Rel.331, 416–433 (2021).
  • Hoyer H , SchlockerW , GreindlM , OstermannT , Bernkop-SchnürchA. Preparation and evaluation of thiomer nanoparticles via high pressure homogenization. J. Microencapsul.27(6), 487–495 (2010).
  • Kotta S , KhanAW , AnsariSH , SharmaRK , AliJ. Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv.22(4), 455–466 (2015).
  • Houbrechts M , Caireda Silva L , EthirajanA , LandfesterK. Formation of giant polymer vesicles by simple double emulsification using block copolymers as the sole surfactant. Soft Matter17(19), 4942–4948 (2021).
  • Denkova AG , de KruijffRM , Serra-CrespoP. Nanocarrier-mediated photochemotherapy and photoradiotherapy. Adv. Healthc. Mater. 7(8), 1701211 (2018).
  • Tough DF , SunS , ZhangX , SprentJ. Stimulation of naive and memory T cells by cytokines. Immunol. Rev.170, 39–47 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.