146
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Platelet-Derived Extracellular Vesicles: A New-Generation Nanostructured Tool for Chronic Wound Healing

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 915-941 | Received 23 Nov 2023, Accepted 05 Feb 2024, Published online: 06 Mar 2024

References

  • Gallo RL . Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol.137(6), 1213–1214 (2017).
  • Zhao R , LiangH , ClarkeE , JacksonC , XueM. Inflammation in chronic wounds. Int. J. Mol. Sci.17(12), 2085 (2016).
  • Yeganeh PM , TahmasebiS , EsmaeilzadehA. Cellular and biological factors involved in healing wounds and burns and treatment options in tissue engineering. Regen. Med.17(6), 401–418 (2022).
  • Broughton G 2nd , JanisJE , AttingerCE. Wound healing: an overview. Plast. Reconstr. Surg.117(Suppl. 7), 1e-S–32e-S (2006).
  • Martinengo L , OlssonM , BajpaiRet al. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann. Epidemiol.29, 8–15 (2019).
  • Farahani M , ShafieeA. Wound healing: from passive to smart dressings. Adv. Healthc. Mater.10(16), e2100477 (2021).
  • Luze H , NischwitzSP , SmolleC , ZrimR , KamolzLP. The use of acellular fish skin grafts in burn wound management – a systematic review. Medicina (Kaunas)58(7), 912 (2022).
  • Okur ME , KarantasID , ŞenyiğitZ , ÜstündağOkur N , SiafakaPI. Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian J. Pharm. Sci.15(6), 661–684 (2020).
  • Bowers S , FrancoE. Chronic wounds: evaluation and management. Am. Fam. Physician101(3), 159–166 (2020).
  • Barrientos S , StojadinovicO , GolinkoMS , BremH , Tomic-CanicM. Growth factors and cytokines in wound healing. Wound Repair Regen.16(5), 585–601 (2008).
  • Daneshi N , BahmaieN , EsmaeilzadehA. Cell-free treatments: a new generation of targeted therapies for treatment of ischemic heart diseases. Cell J. (Yakhteh)24(7), 353 (2022).
  • Zare R , MohtashamN , GhaziNet al. Evaluation of correlation between transcription factors and IL-17 in oral and cutaneous lichen planus lesions and leukocytes. Cytokine148, 155696 (2021).
  • Khosh E , EsmaeilzadehA. Advances of mesenchymal stem cells-derived exosome therapy for ischemic stroke. Int. J. Stroke15(1), 642–643 (2020).
  • Li S , XingF , YanT , ZhangS , ChenF. The efficiency and safety of platelet-rich plasma dressing in the treatment of chronic wounds: a systematic review and meta-analysis of randomized controlled trials. J. Pers. Med.13(3), 430 (2023).
  • Xu K , DengS , ZhuYet al. Platelet rich plasma loaded multifunctional hydrogel accelerates diabetic wound healing via regulating the continuously abnormal microenvironments. Adv. Healthc. Mater.12(28), 2301370 (2023).
  • Ding N , FuX , GuiQet al. Biomimetic structure hydrogel loaded with long-term storage platelet-rich plasma in diabetic wound repair. Adv. Healthc. Mater.2303192 doi: 10.1002/adhm.202303192 (2023).
  • Re F , SartoreL , MoulisovaVet al. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. J. Tissue Eng.10, 2041731419845852 (2019).
  • Puhm F , BoilardE , MachlusKR. Platelet extracellular vesicles: beyond the blood. Arterioscler. Thromb. Vasc. Biol.41(1), 87–96 (2021).
  • Sousa P , LopesB , SousaACet al. Advancements and insights in exosome-based therapies for wound healing: a comprehensive systematic review (2018–June 2023). Biomedicines11(8), 2099 (2023).
  • Lazar S , GoldfingerLE. Platelets and extracellular vesicles and their cross talk with cancer. Blood137(23), 3192–3200 (2021).
  • Antich-Rosselló M , Forteza-GenestraMA , MonjoM , RamisJM. Platelet-derived extracellular vesicles for regenerative medicine. Int. J. Mol. Sci.22(16), 8580 (2021).
  • Rodrigues M , KosaricN , BonhamCA , GurtnerGC. Wound healing: a cellular perspective. Physiol. Rev.99(1), 665–706 (2019).
  • Golebiewska EM , PooleAW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev.29(3), 153–162 (2015).
  • Sadeghi A , EsmaeilzadehA , LakzaeiT , MazloomzadehS , KarimimoghaddamA , AmmariA. A within-person, between-knee comparison of intra-articular platelet-rich plasma versus placebo injection in knees osteoarthritis: a randomized, double-blind comparison. (2021).
  • Han T , TangH , LinCet al. Extracellular traps and the role in thrombosis. Front. Cardiovasc. Med.9, 951670 (2022).
  • Jiao Y , LiW , WangWet al. Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. Crit. Care24(1), 380 (2020).
  • Wu J , PiaoY , LiuQ , YangX. Platelet-rich plasma-derived extracellular vesicles: a superior alternative in regenerative medicine?Cell Prolif.54(12), e13123 (2021).
  • Dai Z , ZhaoT , SongNet al. Platelets and platelet extracellular vesicles in drug delivery therapy: a review of the current status and future prospects. Front. Pharmacol.13, 1026386 (2022).
  • Hazrati A , SoudiS , MalekpourKet al. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomarker Res.10(1), 30 (2022).
  • Kose O , BotsaliA , CaliskanE. Role of exosomes in skin diseases. J. Cosmet. Dermatol.21(8), 3219–3225 (2022).
  • Goetzl EJ , SchwartzJB , MustapicMet al. Altered cargo proteins of human plasma endothelial cell–derived exosomes in atherosclerotic cerebrovascular disease. FASEB J.31(8), 3689 (2017).
  • Pulliam L , SunB , MustapicM , ChawlaS , KapogiannisD. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J. Neurovirol.25, 702–709 (2019).
  • Singla DK . Stem cells and exosomes in cardiac repair. Curr. Opin. Pharmacol.27, 19–23 (2016).
  • Guo SC , TaoSC , YinWJ , QiX , YuanT , ZhangCQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics7(1), 81–96 (2017).
  • Fonseka P , MarzanAL , MathivananS. Introduction to the community of extracellular vesicles. New Front. Extracell. Vesicles97, 3–18 (2021).
  • Nallakumarasamy A , JeyaramanM , MaffulliNet al. Mesenchymal stromal cell-derived extracellular vesicles in wound healing. Life12(11), 1733 (2022).
  • Ali NB , AbdullRazis AF , OoiDJ , ChanKW , IsmailN , FooJB. Theragnostic applications of mammal and plant-derived extracellular vesicles: latest findings, current technologies, and prospects. Molecules27(12), 3941 (2022).
  • Kim H , WangSY , KwakG , YangY , KwonIC , KimSH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv. Sci. (Weinheim)6(20), 1900513 (2019).
  • Yang XX , SunC , WangL , GuoXL. New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Rel.308, 119–129 (2019).
  • Daneshi N , EsmaeilzadehA , BahmaieN. 47D11 antibody-engineered exosomes for targeted delivery of remdesivir in patients with COVID-19: dream or principle? (a critical editorial study). Eurasian J. Med.54(3), 310–312 (2022).
  • Mohammadi V , MalekiAJ , NazariMet al. Chimeric antigen receptor (CAR)-based cell therapy for type 1 diabetes mellitus (T1DM); current progress and future approaches. Stem Cell Rev. Rep.1–16 doi: 10.1007/s12015-023-10668-1 (2023) (Epub ahead of print).
  • Eustes AS , DayalS. The role of platelet-derived extracellular vesicles in immune-mediated thrombosis. Int. J. Mol. Sci.23(14), 7837 (2022).
  • Antich-Rosselló M , Forteza-GenestraMA , RonoldHJet al. Platelet-derived extracellular vesicles formulated with hyaluronic acid gels for application at the bone-implant interface: an animal study. J. Orthop. Translat.40, 72–79 (2023).
  • Dhurat R , SukeshM. Principles and methods of preparation of platelet-rich plasma: a review and author’s perspective. J. Cutan. Aesthet. Surg.7(4), 189 (2014).
  • Meliciano AEL . Empowering the therapeutic potential of clinically expired platelet concentrates: a new source of extracellular vesicles. (2022). http://hdl.handle.net/10362/141380
  • Alves R , GrimaltR. A review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin Appendage Disord.4(1), 18–24 (2018).
  • Cole BJ , SeroyerST , FilardoG , BajajS , FortierLA. Platelet-rich plasma: where are we now and where are we going?Sports Health2(3), 203–210 (2010).
  • Ostermeier B , Soriano-SarabiaN , MaggirwarSB. Platelet-released factors: their role in viral disease and applications for extracellular vesicle (EV) therapy. Int. J. Mol. Sci.23(4), 2321 (2022).
  • Spakova T , JanockovaJ , RosochaJ. Characterization and therapeutic use of extracellular vesicles derived from platelets. Int. J. Mol. Sci.22(18), 9701 (2021).
  • Taus F , MeneguzziA , CastelliM , MinuzP. Platelet-derived extracellular vesicles as target of antiplatelet agents. What is the evidence?Front. Pharmacol.10, 1256 (2019).
  • Saumell-Esnaola M , DelgadoD , GarcíaDel Caño Get al. Isolation of platelet-derived exosomes from human platelet-rich plasma: biochemical and morphological characterization. Int. J. Mol. Sci.23(5), 2861 (2022).
  • Krylova SV , FengD. The machinery of exosomes: biogenesis, release, and uptake. Int. J. Mol. Sci.24(2), 1337 (2023).
  • Ali NB , AbdullRazis AF , OoiJ , ChanKW , IsmailN , FooJB. Theragnostic applications of mammal and plant-derived extracellular vesicles: latest findings, current technologies, and prospects. Molecules27(12), 3941 (2022).
  • Li M , LiR , YangSet al. Exosomes derived from bone marrow mesenchymal stem cells prevent acidic pH-induced damage in human nucleus pulposus cells. Med. Sci. Monit.26, e922928 (2020).
  • Xing H , ZhangZ , MaoQet al. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J. Nanobiotechnol.19(1), 264 (2021).
  • Liao Z , LuoR , LiGet al. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics9(14), 4084–4100 (2019).
  • Lu J , YangX , HeCet al. Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet-derived exosomes loaded with recombinant Yap1. Acta Biomater.161, 80–99 (2023).
  • Anitua E , TroyaM , Falcon-PérezJM , López-SarrioS , GonzálezE , AlkhraisatMH. Advances in platelet rich plasma-derived extracellular vesicles for regenerative medicine: a systematic-narrative review. Int. J. Mol. Sci.24(17), 13043 (2023).
  • Zaldivia MTK , McfadyenJD , LimB , WangX , PeterK. Platelet-derived microvesicles in cardiovascular diseases. Front. Cardiovasc. Med.4, 74 (2017).
  • Wang W , DengZ , LiuGet al. Platelet-derived extracellular vesicles promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes via CXCR2 signaling. Exp. Ther. Med.22(4), 1120 (2021).
  • Narauskaitė D , VydmantaitėG , RusteikaitėJet al. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel)14(8), 811 (2021).
  • Zhu Z , SunS , JiangT , ZhangL , ChenM , ChenS. A double-edged sword of platelet-derived extracellular vesicles in tissues, injury or repair: the current research overview. Tissue Cell82, 102066 (2023).
  • Xu N , WangL , GuanJet al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int. J. Biol. Macromol.117, 102–107 (2018).
  • Lovisolo F , CartonF , GinoS , MigliarioM , RenòF. Platelet rich plasma-derived microvesicles increased in vitro wound healing. Eur. Rev. Med. Pharmacol. Sci.24(18), 9658–9664 (2020).
  • Mause SF , RitzelE , LiehnEAet al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation122(5), 495–506 (2010).
  • Kim HK , SongKS , ChungJH , LeeKR , LeeSN. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol.124(3), 376–384 (2004).
  • Hao PC , BurnoufT , ChiangCWet al. Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels. J. Nanobiotechnol.21(1), 318 (2023).
  • Lopez E , SrivastavaAK , BurchfieldJet al. Platelet-derived-extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci. Rep.9(1), 17676 (2019).
  • Lee JH , JungH , SongJ , ChoiES , YouG , MokH. Activated platelet-derived vesicles for efficient hemostatic activity. Macromol. Biosci.20(3), e1900338 (2020).
  • Miyazawa B , TrivediA , TogarratiPPet al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J. Trauma Acute Care Surg.86(6), 931–942 (2019).
  • Effect of plasma derived exosomes on intractable cutaneous wound healing: prospective trial. https://clinicaltrials.gov/study/NCT02565264#study-record-dates
  • Sang Y , RoestM , DeLaat B , DeGroot PG , HuskensD. Interplay between platelets and coagulation. Blood Rev.46, 100733 (2021).
  • Kerris EWJ , HoptayC , CalderonT , FreishtatRJ. Platelets and platelet extracellular vesicles in hemostasis and sepsis. J. Investig. Med.68(4), 813–820 (2020).
  • Sinauridze EI , KireevDA , PopenkoNYet al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost.97(3), 425–434 (2007).
  • Cai Z , FengJ , DongN , ZhouP , HuangY , ZhangH. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets34(1), 2242708 (2023).
  • Eustes AS , DayalS. The role of platelet-derived extracellular vesicles in immune-mediated thrombosis. Int. J. Mol. Sci.23(14), 7837 (2022).
  • Dyer MR , AlexanderW , HassouneAet al. Platelet-derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice. J. Thromb. Haemost.17(10), 1733–1745 (2019).
  • Guervilly C , BonifayA , BurteySet al. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv.5(3), 628–634 (2021).
  • Puhm F , AllaeysI , LacasseEet al. Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv.6(12), 3593–3605 (2022).
  • Zifkos K , DuboisC , SchäferK. Extracellular vesicles and thrombosis: update on the clinical and experimental evidence. Int. J. Mol. Sci.22(14), 7837 (2021).
  • Barry OP , PraticoD , LawsonJA , FitzgeraldGA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Invest.99(9), 2118–2127 (1997).
  • Ferreira PM , BozbasE , TannettaSDet al. Mode of induction of platelet-derived extracellular vesicles is a critical determinant of their phenotype and function. Sci. Rep.10(1), 18061 (2020).
  • Patel H , PundkarA , ShrivastavaS , ChandanwaleR , JaiswalAM. A comprehensive review on platelet-rich plasma activation: a key player in accelerating skin wound healing. Cureus15(11), e48943 (2023).
  • Suades R , PadróT , VilahurG , BadimonL. Platelet-released extracellular vesicles: the effects of thrombin activation. Cell. Mol. Life Sci.79(3), 190 (2022).
  • Pluchart C , BarbeC , PoitevinG , AudonnetS , NguyenP. A pilot study of procoagulant platelet extracellular vesicles and P-selectin increase during induction treatment in acute lymphoblastic leukaemia paediatric patients: two new biomarkers of thrombogenic risk?J. Thromb. Thrombolysis51(3), 711–719 (2021).
  • Cavallo C , RoffiA , GrigoloBet al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed. Res. Int.2016, 6591717 (2016).
  • Kunder V , SharmaKC , RizviZ , SoubeletR , DucharmeM. The use of platelet-rich plasma in the treatment of diabetic foot ulcers: a scoping review. Cureus15(8), e43452 (2023).
  • Ma Q , FanQ , HanXet al. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. J. Control. Rel.329, 445–453 (2021).
  • Ruiter DJ , SchlingemannRO , WestphalJR , DenijnM , RietveldFJ , DeWaal RM. Angiogenesis in wound healing and tumor metastasis. Behring Inst. Mitt. (92), 258–272 (1993).
  • Martin RF . Wound healing. Surg. Clin. North Am.100(4), ix–xi (2020).
  • Wallace HA , BasehoreBM , ZitoPM. Wound healing phases. In: StatPearls. ( Eds). StatPearls Publishing, FL, USA (2023).
  • Velnar T , BaileyT , SmrkoljV. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res.37(5), 1528–1542 (2009).
  • Gentile P , GarcovichS. Systematic review – the potential implications of different platelet-rich plasma (PRP) concentrations in regenerative medicine for tissue repair. Int. J. Mol. Sci.21(16), 5702 (2020).
  • Alinezhad V , EsmaeilzadehK , BagheriHet al. Engineering a platelet-rich plasma-based multifunctional injectable hydrogel with photothermal, antibacterial, and antioxidant properties for skin regeneration. Biomater. Sci.11(17), 5872–5892 (2023).
  • Li Y , LiD , YouLet al. dCas9-based PDGFR-β activation ADSCs accelerate wound healing in diabetic mice through angiogenesis and ECM remodeling. Int. J. Mol. Sci.24(6), 5949 (2023).
  • Hayon Y , DashevskyO , ShaiE , BrillA , VaronD , LekerRR. Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr. Neurovasc. Res.9(3), 185–192 (2012).
  • Roedersheimer M , NijmehH , BurnsN , SidiakovaAA , StenmarkKR , GerasimovskayaEV. Complementary effects of extracellular nucleotides and platelet-derived extracts on angiogenesis of vasa vasorum endothelial cells in vitro and subcutaneous Matrigel plugs in vivo. Vasc. Cell3(1), 4 (2011).
  • Shan LY , LiJZ , ZuLYet al. Platelet-derived microparticles are implicated in remote ischemia conditioning in a rat model of cerebral infarction. CNS Neurosci. Ther.19(12), 917–925 (2013).
  • Sun Y , LiuXL , ZhangDet al. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr. Vasc. Pharmacol.17(4), 379–387 (2019).
  • Bordin A , ChirivìM , PaganoFet al. Human platelet lysate-derived extracellular vesicles enhance angiogenesis through miR-126. Cell Prolif.55(11), e13312 (2022).
  • Dengler VL , GalbraithM , EspinosaJM. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol.49(1), 1–15 (2014).
  • Shibuya M . Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer2(12), 1097–1105 (2011).
  • Pandey AK , SinghiEK , ArroyoJPet al. Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension71(2), e1–e8 (2018).
  • Carmeliet P . VEGF as a key mediator of angiogenesis in cancer. Oncology69(Suppl. 3), 4–10 (2005).
  • Abhinand CS , RajuR , SoumyaSJ , AryaPS , SudhakaranPR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal.10(4), 347–354 (2016).
  • Lyttle BD , VaughnAE , BardillJRet al. Effects of microRNAs on angiogenesis in diabetic wounds. Front. Med. (Lausanne)10, 1140979 (2023).
  • Song M , FinleySD. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst. Biol.12(1), 145 (2018).
  • Elçin YM , DixitV , GitnickG. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif. Organs25(7), 558–565 (2001).
  • Chereddy KK , LopesA , KoussoroplisSet al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine11(8), 1975–1984 (2015).
  • Zhu Y , WangY , JiaY , XuJ , ChaiY. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen.27(4), 324–334 (2019).
  • Simons M , WareJA. Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug Discov.2(11), 863–871 (2003).
  • Carmeliet P , MoonsL , LuttunAet al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med.7(5), 575–583 (2001).
  • Cianfarani F , ZambrunoG , BrogelliLet al. Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am. J. Pathol.169(4), 1167–1182 (2006).
  • Fang RC , GalianoRD. A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics2(1), 1–12 (2008).
  • Wieman TJ . Clinical efficacy of becaplermin (rhPDGF-BB) gel. Becaplermin Gel Studies Group. Am. J. Surg.176(2A Suppl.), 74S–79S (1998).
  • Smiell JM , WiemanTJ , SteedDL , PerryBH , SampsonAR , SchwabBH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen.7(5), 335–346 (1999).
  • Torreggiani E , PerutF , RoncuzziL , ZiniN , BaglìoSR , BaldiniN. Exosomes: novel effectors of human platelet lysate activity. Eur. Cell Mater.28, 137–151 (2014).
  • Tao SC , YuanT , RuiBY , ZhuZZ , GuoSC , ZhangCQ. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics7(3), 733–750 (2017).
  • Veith AP , HendersonK , SpencerA , SligarAD , BakerAB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev.146, 97–125 (2019).
  • Xie Z , ParasCB , WengHet al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater.9(12), 9351–9359 (2013).
  • Sun J , ZhaoH , ShenCet al. Tideglusib promotes wound healing in aged skin by activating PI3K/Akt pathway. Stem Cell Res. Ther.13(1), 269 (2022).
  • Schultz G , RotatoriDS , ClarkW. EGF and TGF-alpha in wound healing and repair. J. Cell. Biochem.45(4), 346–352 (1991).
  • Hong JP , JungHD , KimYW. Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers. Ann. Plast. Surg.56(4), 394–398 (2006).
  • Yang Q , ZhangY , YinH , LuY. Topical recombinant human epidermal growth factor for diabetic foot ulcers: a meta-analysis of randomized controlled clinical trials. Ann. Vasc. Surg.62, 442–451 (2020).
  • Viswanathan V , JuttadaU , BabuM. Efficacy of recombinant human epidermal growth factor (Regen-D 150) in healing diabetic foot ulcers: a hospital-based randomized controlled trial. Int. J. Low Extrem. Wounds19(2), 158–164 (2020).
  • Hom DB , MaiselRH. Angiogenic growth factors: their effects and potential in soft tissue wound healing. Ann. Otol. Rhinol. Laryngol.101(4), 349–354 (1992).
  • Tonnesen MG , FengX , ClarkRA. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc.5(1), 40–46 (2000).
  • Liu Y , LiuY , DengJ , LiW , NieX. Fibroblast growth factor in diabetic foot ulcer: progress and therapeutic prospects. Front. Endocrinol. (Lausanne)12, 744868 (2021).
  • Beer HD , LongakerMT , WernerS. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J. Invest. Dermatol.109(2), 132–138 (1997).
  • Galiano RD , TepperOM , PeloCRet al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol.164(6), 1935–1947 (2004).
  • Brown RL , BreedenMP , GreenhalghDG. PDGF and TGF-alpha act synergistically to improve wound healing in the genetically diabetic mouse. J. Surg. Res.56(6), 562–570 (1994).
  • Liu Y , ZhangH , YanLet al. MMP-2 and MMP-9 contribute to the angiogenic effect produced by hypoxia/15-HETE in pulmonary endothelial cells. J. Mol. Cell. Cardiol.121, 36–50 (2018).
  • Kandler B , FischerMB , WatzekG , GruberR. Platelet-released supernatant increases matrix metalloproteinase-2 production, migration, proliferation, and tube formation of human umbilical vascular endothelial cells. J. Periodontol.75(9), 1255–1261 (2004).
  • Mendonça RJ , Coutinho-NettoJ. Cellular aspects of wound healing. An. Bras. Dermatol.84(3), 257–262 (2009).
  • Guo S , DipietroLA. Factors affecting wound healing. J. Dent. Res.89(3), 219–229 (2010).
  • Marcoux G , MagronA , SutCet al. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion59(7), 2403–2414 (2019).
  • Nomura S , OkamaeF , AbeMet al. Platelets expressing P-selectin and platelet-derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes. Clin. Appl. Thromb. Hemost.6(4), 213–221 (2000).
  • Johnson J , WuYW , BlythC , LichtfussG , GoubranH , BurnoufT. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol.39(6), 598–612 (2021).
  • Kuravi SJ , HarrisonP , RaingerGE , NashGB. Ability of platelet-derived extracellular vesicles to promote neutrophil-endothelial cell interactions. Inflammation42(1), 290–305 (2019).
  • Chimen M , EvryviadouA , BoxCLet al. Appropriation of GPIbα from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation. Haematologica105(5), 1248–1261 (2020).
  • Lee SJ , YoonBR , KimHY , YooSJ , KangSW , LeeWW. Activated platelets convert CD14(+) CD16(-) into CD14(+) CD16(+) monocytes with enhanced FcγR-mediated phagocytosis and skewed M2 polarization. Front. Immunol.11, 611133 (2020).
  • Sadallah S , EkenC , MartinPJ , SchifferliJA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J. Immunol.186(11), 6543–6552 (2011).
  • Sadallah S , AmicarellaF , EkenC , IezziG , SchifferliJA. Ectosomes released by platelets induce differentiation of CD4+ T cells into T regulatory cells. Thromb. Haemost.112(6), 1219–1229 (2014).
  • Chaudhary PK , KimS , KimS. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. Life (Basel)13(6), 1403 (2023).
  • Krzyszczyk P , SchlossR , PalmerA , BerthiaumeF. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol.9, 419 (2018).
  • Kotwal GJ , ChienS. Macrophage differentiation in normal and accelerated wound healing. Results Probl. Cell Differ.62, 353–364 (2017).
  • Escobar G , EscobarA , AscuiGet al. Pure platelet-rich plasma and supernatant of calcium-activated P-PRP induce different phenotypes of human macrophages. Regen. Med.13(4), 427–441 (2018).
  • Uchiyama R , ToyodaE , MaeharaMet al. Effect of platelet-rich plasma on M1/M2 macrophage polarization. Int. J. Mol. Sci.22(5), 2336 (2021).
  • Lyu L , CaiY , ZhangGet al. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing. Front. Mol. Biosci.9, 1008802 (2022).
  • Okuno Y , Nakamura-IshizuA , KishiK , SudaT , KubotaY. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood117(19), 5264–5272 (2011).
  • Song N , PanK , ChenL , JinK. Platelet derived vesicles enhance the TGF-beta signaling pathway of M1 macrophage. Front. Endocrinol. (Lausanne)13, 868893 (2022).
  • Kloc M , GhobrialRM , WosikJ , LewickaA , LewickiS , KubiakJZ. Macrophage functions in wound healing. J. Tissue Eng. Regen. Med.13(1), 99–109 (2019).
  • Haalboom M . Chronic wounds: innovations in diagnostics and therapeutics. Curr. Med. Chem.25(41), 5772–5781 (2018).
  • Landén NX , LiD , StåhleM. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci.73(20), 3861–3885 (2016).
  • Cialdai F , RisalitiC , MoniciM. Role of fibroblasts in wound healing and tissue remodeling on earth and in space. Front. Bioeng. Biotechnol.10, 958381 (2022).
  • Bainbridge P . Wound healing and the role of fibroblasts. J. Wound Care22(8), 407–408; 410–412 (2013).
  • Ruan GX , KazlauskasA. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J.31(7), 1692–1703 (2012).
  • Antich-Rosselló M , Munar-BestardM , Forteza-GenestraMAet al. Evaluation of platelet-derived extracellular vesicles in gingival fibroblasts and keratinocytes for periodontal applications. Int. J. Mol. Sci.23(14), 7668 (2022).
  • Johnson J , LawSQK , ShojaeeMet al. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J. Extracell. Vesicles12(7), e12332 (2023).
  • Burnouf T , ChouML , LundyDJ , ChuangEY , TsengCL , GoubranH. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J. Biomed. Sci.30(1), 79 (2023).
  • Heijnen HF , SchielAE , FijnheerR , GeuzeHJ , SixmaJJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood94(11), 3791–3799 (1999).
  • Jonsdottir-Buch SM , LiederR , SigurjonssonOE. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLOS ONE8(7), e68984 (2013).
  • Zarà M , VismaraM , DonaGet al. The impact of platelet isolation protocol on the release of extracellular vesicles. Front. Biosci. (Landmark Ed.)27(5), 161 (2022).
  • Antich-Rosselló M, Forteza-Genestra MA, Monjo M, Ramis JM Platelet-Derived Extracellular Vesicles for Regenerative Medicine Int. J. Mol. Sci. 22(16), 8580 (2021).
  • Qin B , ZhangQ , HuXMet al. How does temperature play a role in the storage of extracellular vesicles? J. Cell. Physiol. 235(11), 7663–7680 (2020).
  • Spakova T , JanockovaJ , RosochaJ. Characterization and therapeutic use of extracellular vesicles derived from platelets. Int. J. Mol. Sci.22(18), 9701 (2021).
  • Antich-Rosselló M , Forteza-GenestraMA , CalvoJ , GayàA , MonjoM , RamisJM. Platelet-derived extracellular vesicles promote osteoinduction of mesenchymal stromal cells. Bone Joint Res.9(10), 667–674 (2020).
  • Rikkert LG , CoumansFAW , HauCM , TerstappenL , NieuwlandR. Platelet removal by single-step centrifugation. Platelets32(4), 440–443 (2021).
  • Leong SY , OngHB , TayHMet al. Microfluidic size exclusion chromatography (μSEC) for extracellular vesicles and plasma protein separation. Small18(6), e2104470 (2022).
  • Otahal A , Kuten-PellaO , KramerKet al. Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products. Sci. Rep.11(1), 5823 (2021).
  • Liangsupree T , MultiaE , RiekkolaML. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A1636, 461773 (2021).
  • Franco C , GhirardelloA , BertazzaLet al. Size-exclusion chromatography combined with ultrafiltration efficiently isolates extracellular vesicles from human blood samples in health and disease. Int. J. Mol. Sci.24(4), 3663 (2023).
  • Ströhle G , GanJ , LiH. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal. Bioanal. Chem.414(24), 7051–7067 (2022).
  • Rui S , YuanY , DuCet al. Comparison and investigation of exosomes derived from platelet-rich plasma activated by different agonists. Cell Transplant.30, 9636897211017833 (2021).
  • Cao W , MengX , CaoF , WangJ , YangM. Exosomes derived from platelet-rich plasma promote diabetic wound healing via the JAK2/STAT3 pathway. iScience26(11), 108236 (2023).
  • Meznerics FA , FehérváriP , DembrovszkyFet al. Platelet-rich plasma in chronic wound management: a systematic review and meta-analysis of randomized clinical trials. J. Clin. Med.11(24), 7532 (2022).
  • Margono A , BagioDA , JuliantoI , SuprastiwiE. The effect of calcium gluconate on platelet rich plasma activation for VEGF-A expression of human dental pulp stem cells. Eur. J. Dent.16(2), 424–429 (2022).
  • Song J , SongB , YuanL , YangG. Multiplexed strategies toward clinical translation of extracellular vesicles. Theranostics12(15), 6740–6761 (2022).
  • Vozel D , BožičD , JeranMet al. Autologous platelet- and extracellular vesicle-rich plasma is an effective treatment modality for chronic postoperative temporal bone cavity inflammation: randomized controlled clinical trial. Front. Bioeng. Biotechnol.9, 677541 (2021).
  • Rezaie J , FeghhiM , EtemadiT. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal.20(1), 145 (2022).
  • Akbarzadeh S , MckenzieMB , RahmanMM , ClelandH. Allogeneic platelet-rich plasma: is it safe and effective for wound repair?Eur. Surg. Res.62(1), 1–9 (2021).
  • Kiefel V . Reactions induced by platelet transfusions. Transfus. Med. Hemother.35(5), 354–358 (2008).
  • Cognasse F , HallyK , Fauteux-DanielSet al. Effects and side effects of platelet transfusion. Hamostaseologie41(2), 128–135 (2021).
  • Chen J , WangM , ZhangYet al. Platelet extracellular vesicles: darkness and light of autoimmune diseases. Int. Rev. Immunol. doi: 10.1080/08830185.2023.2225551, 1–11 (2023).
  • Sprague DL , ElzeyBD , CristSA , WaldschmidtTJ , JensenRJ , RatliffTL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood111(10), 5028–5036 (2008).
  • Agrahari V , AgrahariV , BurnoufPA , ChewCH , BurnoufT. Extracellular microvesicles as new industrial therapeutic frontiers. Trends Biotechnol.37(7), 707–729 (2019).
  • Sarkar S , AlamMA , ShawJ , DasguptaAK. Drug delivery using platelet cancer cell interaction. Pharm. Res.30(11), 2785–2794 (2013).
  • Soleymani S , YariF , BolhassaniA , BakhshandehH. Platelet microparticles: an effective delivery system for anti-viral drugs. J. Drug Deliv. Sci. Technol.51, 290–296 (2019).
  • Wu YW , LeeDY , LuYLet al. Platelet extracellular vesicles are efficient delivery vehicles of doxorubicin, an anti-cancer drug: preparation and in vitro characterization. Platelets34(1), 2237134 (2023).
  • Lu S , LuL , LiuYet al. Native and engineered extracellular vesicles for wound healing. Front. Bioeng. Biotechnol.10, 1053217 (2022).
  • Joorabloo A , LiuT. Engineering exosome-based biomimetic nanovehicles for wound healing. J. Control. Rel.356, 463–480 (2023).
  • Ghaffarinovin Z , SoltaniniaO , MortazaviY , EsmaeilzadehA , NadriS. Repair of rat cranial bone defect by using amniotic fluid-derived mesenchymal stem cells in polycaprolactone fibrous scaffolds and platelet-rich plasma. Bioimpacts11(3), 209–217 (2021).
  • Nadri S , BaratiG , MostafaviH , EsmaeilzadehA , EnderamiSE. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. Artif. Cells Nanomed. Biotechnol.46(Suppl. 1), 178–187 (2018).
  • Li S , XingF , YanT , ZhangS , ChenF. The efficiency and safety of platelet-rich plasma dressing in the treatment of chronic wounds: a systematic review and meta-analysis of randomized controlled trials. J. Pers. Med.13(3), 430 (2023).
  • Zeng J , SunZ , ZengF , GuC , ChenX. M2 macrophage-derived exosome-encapsulated microneedles with mild photothermal therapy for accelerated diabetic wound healing. Mater. Today Bio.20, 100649 (2023).
  • Esmaeilzadeh A . Mesenchymal stem cell as a vector for gene and cell therapy strategies. Stud. Stem Cells Res. Ther.1, 017–018 (2015).
  • Garofalo M , VillaA , CrescentiDet al. Heterologous and cross-species tropism of cancer-derived extracellular vesicles. Theranostics9(19), 5681–5693 (2019).
  • Ding JY , ChenMJ , WuLFet al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil. Med. Res.10(1), 36 (2023).
  • Milbank E , DraganoNRV , González-GarcíaIet al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat. Metab.3(10), 1415–1431 (2021).
  • Maji S , YanIK , ParasramkaM , MohankumarS , MatsudaA , PatelT. In vitro toxicology studies of extracellular vesicles. J. Appl. Toxicol.37(3), 310–318 (2017).
  • Mazaheri T , EsmaeilzadehA , MirzaeiM. Introducing the immunomodulatory effects of mesenchymal stem cells in an experimental model of Behçet’s disease. J. Med. Hypotheses Ideas6, 23–27 (2012).
  • Marofi F , VahediG , BiglariA , EsmaeilzadehA , AthariSS. Mesenchymal stromal/stem cells: a new era in the cell-based targeted gene therapy of cancer. Front. Immunol.8, 1770 (2017).
  • Marques Da Silva M , OlssonDC , TeixeiraBL , JeremiasTDS , TrentinAG. Mesenchymal stromal cell-secretome for therapeutic application in skin wound healing: a systematic review of preclinical studies. Cells Tissues Organs doi:10.1159/000526093 (2022).
  • Mahmoudian-Sani MR , RafeeiF , AminiR , SaidijamM. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J. Cosmet. Dermatol.17(5), 650–659 (2018).
  • Qu F , GengR , LiuY , ZhuJ. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics12(7), 3372–3406 (2022).
  • Zhao Z , ChenY , ShiY. Microneedles: a potential strategy in transdermal delivery and application in the management of psoriasis. RSC Adv.10(24), 14040–14049 (2020).
  • Yang G , ChenQ , WenDet al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano13(4), 4354–4360 (2019).
  • Yuan M , LiuK , JiangTet al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and tazarotene promote diabetic wound healing. J. Nanobiotechnol.20(1), 147 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.