17
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Evolution of the human CNS cholineric system: has this resulted in the emergence of psychiatric disease?

Pages 1016-1028 | Received 22 May 2009, Accepted 29 May 2009, Published online: 10 Dec 2009

References

  • Darwin C. On the origins of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray, 1859.
  • Dawkins R. The selfish gene. Oxford: Oxford University Press, 1976.
  • Lamarck J-B. Philosophie zoologique, ou exposition des considérations relatives à l'histoire naturelle des animaux, a ‘la diversite’ de leur organisation et des faculte's qu'ils en obtiennent. Paris: Dentu, 1809.
  • van Vliet J, Oates NA, Whitelaw E. Epigenetic mechanisms in the context of complex diseases. Cell Mol Life Sci 2007; 64:1531–1538.
  • Youngson NA, Whitelaw E. Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 2008; 9:233–257.
  • Tsuang M. Schizophrenia: genes and environment. Biol Psychiatry 2000; 47:210–220.
  • Crow TJ. Auditory hallucinations as primary disorders of syntax: an evolutionary theory of the origins of language. Cognit Neuropsychiatry 2004; 9:125–145.
  • Dean B. Is schizophrenia the price of human central nervous system complexity?. Aust N Z J Psychiatry 2009; 43:13–24.
  • Dean B. Understanding the pathology of schizophrenia: recent advances from the study of the molecular architecture of postmortem CNS tissue. Postgrad Med J 2002; 78:142–148.
  • Dean B. Changes in the molecular structure of the brain in bipolar disorder: findings using human postmortem brain tissue. World J Biol Psychiatry 2002; 3:125–132.
  • Charney DS. Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 1998; 59(Suppl 14):11–14.
  • Michelson MJ. Some aspects of evolutionary pharmacology. Biochem Pharmacol 1974; 23:2211–2224.
  • Dale HH. The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 1914; 6:147–190.
  • Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007; 12:232–246.
  • Gibbons AS, Scarr E, McLean C, Sundram S, Dean B. Decreased muscarinic receptor binding in the frontal cortex of bipolar disorder and major depressive disorder subjects. J Affect Disord 2008.
  • Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness?. Trends Neurosci 1999; 22:273–280.
  • Taylor P, Brown JH. Acetycholine. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD. Basic neurochemistry. New York: Lippincott-Raven, 1999; 213–242.
  • Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 1995; 9:619–625.
  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009; 89:73–120.
  • McNeil SD, Nuccio ML, Ziemak MJ, Hanson AD. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci USA 2001; 98:10 001–10 005.
  • Zeisel SH. Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1981; 1:95–121.
  • Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 1995; 64:315–343.
  • Goldfine H, Hagen P. N-methyl groups in bacterial lipids. 3. Phospholipids of hyphomicrobia. J Bacteriol 1968; 95:367–375.
  • Snipes W, Keith A, Wanda P. Active transport of choline by a marine pseudomonad. J Bacteriol 1974; 120:197–202.
  • Yamamura HI, Snyder SH. Choline: high-affinity uptake by rat brain synaptosomes. Science 1972; 178:626–628.
  • Gilboa-Garber N, Zakut V, Mizrahi L. Production of cholinesterase by Pseudomonas aeruginosa, its regulation by glucose and cyclic AMP and inhibition by antiserum. Biochim Biophys Acta 1976; 297:120–124.
  • Fitch WW. Studies on a cholinesterase of Pseudomonas Fluorescens. I. Enzyme induction and the metabolism of acetylcholine. Biochemistry 1963; 2:1217–1221.
  • Salvano MA, Lisa TA, Domenech CE. Choline transport in Pseudomonas aeruginosa. Mol Cell Biochem 1989; 85:81–89.
  • Ferguson SM, Blakely RD. The choline transporter resurfaces: new roles for synaptic vesicles?. Mol Interv 2004; 4:22–37.
  • Raiteri M, Marchi M, Caviglia AM. Studies on a possible functional coupling between presynaptic acetylcholinesterase and high-affinity choline uptake in the rat brain. J Neurochem 1986; 47:1696–1699.
  • Ferguson SM, Savchenko V, Apparsundaram S, . Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci 2003; 23:9697–9709.
  • Pocard JA, Bernard T, Smith LT, Le RD. Characterization of three choline transport activities in Rhizobium meliloti: modulation by choline and osmotic stress. J Bacteriol 1989; 171:531–537.
  • Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I. Identification and characterization of the high-affinity choline transporter. Nat Neurosci 2000; 3:120–125.
  • Hedges SB. The origin and evolution of model organisms. Nat Rev Genet 2002; 3:838–849.
  • Sastry BV, Sadavongvivad C. Cholinergic systems in non-nervous tissues. Pharmacol Rev 1978; 30:65–132.
  • Kawashima K, Misawa H, Moriwaki Y, . Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 2007; 80:2206–2209.
  • Horiuchi Y, Kimura R, Kato N, . Evolutional study on acetylcholine expression. Life Sci 2003; 72:1745–1756.
  • Chet I, Henis Y, Mitchell R. Effect of biogenic amines and cannabinoids on bacterial chemotaxis. J Bacteriol 1973; 115:1215–1218.
  • Hartmann E, Kilbinger H. Occurrence of light-dependent acetylcholine concentrations in higher plants. Experientia 1974; 30:1397–1398.
  • Wessler I, Kilbinger H, Bittinger F, Kirkpatrick CJ. The biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 2001; 85:2–10.
  • Odjakova M, Hadjiivanova C. Animal neurotransmitter substances in plants. Bulg J Plant Physiol 1997; 23:94–102.
  • Reimer RJ, Fon EA, Edwards RH. Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr Opin Neurobiol 1998; 8:405–412.
  • Smith CD, Shu S, Mungall CJ, Karpen GH. The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 2007; 316:1586–1591.
  • Takamura K, Egawa T, Ohnishi S, Okada T, Fukuoka T. Developmental expression of ascidian neurotransmitter synthesis genes. I. Choline acetyltransferase and acetylcholine transporter genes. Dev Genes Evol 2002; 212:50–53.
  • Nierman WC, Pain A, Anderson MJ, . Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005; 438:1151–1156.
  • Prado MA, Reis RA, Prado VF, de Mello MC, Gomez MV, de Mello FG. Regulation of acetylcholine synthesis and storage. Neurochem Int 2002; 41:291–299.
  • Cervini R, Houhou L, Pradat PF, Bejanin S, Mallet J, Berrard S. Specific vesicular acetylcholine transporter promoters lie within the first intron of the rat choline acetyltransferase gene. J Biol Chem 1995; 270: 24 654–24 657.
  • Cervini R, Rocchi M, DiDonato S, Finocchiaro G. Isolation and sub-chromosomal localization of a DNA fragment of the human choline acetyltransferase gene. Neurosci Lett 1991; 132:191–194.
  • Erickson JD, Varoqui H, Schafer MK, . Functional identification of a vesicular acetylcholine transporter and its expression from a ‘cholinergic’ gene locus. J Biol Chem 1994; 269:21 929–21 932.
  • Welsch F. Uptake of acetylcholine by human placenta fragments and slices from guinea pig and rat placenta. Biochem Pharmacol 1976; 25:81–89.
  • Rama Sastry BV, Olubadewo J, Harbison RD, Schmidt DE. Human placental cholinergic system. Occurrence, distribution and variation with gestational age of acetylcholine in human placenta. Biochem Pharmacol 1976; 25:425–431.
  • Li WH, Gojobori T. Rapid evolution of goat and sheep globin genes following gene duplication. Mol Biol Evol 1983; 1:94–108.
  • Hughes AL, Ota T, Nei M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol 1990; 7:515–524.
  • Hanada K, Shiu SH, Li WH. The nonsynonymous/synonymous substitution rate ratio versus the radical/conservative replacement rate ratio in the evolution of mammalian genes. Mol Biol Evol 2007; 24:2235–2241.
  • Jin Z. Muscarine, imidazole, oxazole and thiazole alkaloids. Nat Prod Rep 2009; 26:382–445.
  • Wang SS, Shi QM, Li WQ, Niu JF, Li CJ, Zhang FS. Nicotine concentration in leaves of flue-cured tobacco plants as affected by removal of the shoot apex and lateral buds. J Integr Plant Biol 2008; 50:958–964.
  • Wess J. Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 1996; 10:69–99.
  • Venter JC, di Porzio U, Robinson DA, . Evolution of neurotransmitter receptor systems. Prog Neurobiol 1988; 30:105–169.
  • Mongin E, Louis C, Holt RA, Birney E, Collins FH. The Anopheles gambiae genome: an update. Trends Parasitol 2004; 20:49–52.
  • Hwang JM, Chang DJ, Kim US, . Cloning and functional characterization of a Caenorhabditis elegans muscarinic acetylcholine receptor. Receptors Channels 1999; 6:415–424.
  • Bencan Z, Levin ED. The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 2008; 95:408–412.
  • Heil JE, Oland LA, Lohr C. Acetylcholine-mediated axon-glia signaling in the developing insect olfactory system. Eur J Neurosci 2007; 26:1227–1241.
  • Braun G, Bicker G. Habituation of an appetitive reflex in the honeybee. J Neurophysiol 1992; 67:588–598.
  • Ismail N, Robinson GE, Fahrbach SE. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc Natl Acad Sci USA 2006; 103:207–211.
  • Thiel CM. Cholinergic modulation of learning and memory in the human brain as detected with functional neuroimaging. Neurobiol Learn Mem 2003; 80:234–244.
  • Bowie CR, Harvey PD. Cognition in schizophrenia: impairments, determinants, and functional importance. Psychiatr Clin North Am 2005; 28:613–633, 626..
  • Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK. Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006; 60:93–105.
  • Sachs-Ericsson N, Joiner T, Blazer DG. The influence of lifetime depression on self-reported memory and cognitive problems: results from the National Comorbidity Survey-Replication. Aging Ment Health 2008; 12:183–192.
  • Geyer MA, Braff DL. Habituation of the Blink reflex in normals and schizophrenic patients. Psychophysiology 1982; 19:1–6.
  • Carroll CA, Vohs JL, O'Donnell BF, Shekhar A, Hetrick WP. Sensorimotor gating in manic and mixed episode bipolar disorder. Bipolar Disord 2007; 9:221–229.
  • Michael N, Ostermann J, Soros P, Schwindt W, Pfleiderer B. Altered habituation in the auditory cortex in a subgroup of depressed patients by functional magnetic resonance imaging. Neuropsychobiology 2004; 49:5–9.
  • Yokoyama S, Isenberg KE, Wright AF. Adaptive evolution of G-protein coupled receptor genes. Mol Biol Evol 1989; 6:342–353.
  • Ortells MO, Lunt GG. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 1995; 18:121–127.
  • Tsunoyama K, Gojobori T. Evolution of nicotinic acetylcholine receptor subunits. Mol Biol Evol 1998; 15:518–527.
  • Le Novere N, Changeux JP. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 1995; 40:155–172.
  • Dorus S, Vallender EJ, Evans PD, . Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 2004; 119:1027–1040.
  • Shirvan MH, Pollard HB, Heldman E. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells. Proc Natl Acad Sci USA 1991; 88:4860–4864.
  • Grando SA. Biological functions of keratinocyte cholinergic receptors. J Invest Dermatol Symp Proc 1997; 2:41–48.
  • Kong WJ, Cheng HM, van CP. Expression of nicotinic acetylcholine receptor subunit alpha9 in type II vestibular hair cells of rats. Acta Pharmacol Sin 2006; 27:1509–1514.
  • Taranda J, Maison SF, Ballestero JA, . A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection. PloS Biol 2009; 7:e18–
  • McEvoy JP, Allen TB. The importance of nicotinic acetylcholine receptors in schizophrenia, bipolar disorder and Tourette's syndrome. Curr Drug Targets CNS Neurol Disord 2002; 1:433–442.
  • McGeer PL, McGeer EG. Possible changes in striatal and limbic cholinergic systems in schizophrenia. Arch Gen Psychiatry 1977; 34:1319–1323.
  • Haroutunian V, Davidson M, Kanof PD, . Cortical cholinergic markers in schizophrenia. Schizophr Res 1994; 12:137–144.
  • Karson CN, Casanova MF, Kleinman JE, Griffin WS. Choline acetyltransferase in schizophrenia. Am J Psychiatry 1993; 150:454–459.
  • Holt DJ, Herman MM, Hyde TM, . Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 1999; 94:21–31.
  • Watanabe S, Nishikawa T, Takashima M, Toru M. Increased muscarinic cholinergic receptors in prefrontal cortices of medicated schizophrenics. Life Sci 1983; 33:2187–2196.
  • Dean B, Crook JM, Opeskin K, Hill C, Keks N, Copolov DL. The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1996; 1:54–58.
  • Scarr E, Dean B. Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia?. J Neurochem 2008; 107:1188–1195.
  • Dean B, Crook JM, Pavey G, Opeskin K, Copolov DL. Muscarinic1 and 2 receptor mRNA in the human caudate-putamen: no change in m1 mRNA in schizophrenia. Mol Psychiatry 2000; 5:203–207.
  • Crook JM, Dean B, Pavey G, Copolov D. The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci 1999; 64:1761–1771.
  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B. Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 2000; 48:381–388.
  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B. Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann's areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 2001; 158:918–925.
  • Zavitsanou K, Katsifis A, Mattner F, Huang XF. Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 2004; 29:619–625.
  • Deng C, Huang XF. Decreased density of muscarinic receptors in the superior temporal gyrusin schizophrenia. J Neurosci Res 2005; 81:883–890.
  • Newell KA, Zavitsanou K, Jew SK, Huang XF. Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:225–233.
  • Dean B, Gray L, Keriakous D, Scarr E. A comparison of M1 and M4 muscarinic receptors in the thalamus from control subjects and subjects with schizophrenia. Thalamus Relat Syst 2004; 2:287–295.
  • Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E. Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2002; 7:1083–1091.
  • Mancama D, Arranz MJ, Landau S, Kerwin R. Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 119B:2–6.
  • Scarr E, Keriakous D, Crossland N, Dean B. No change in cortical muscarinic M2, M3 receptors or [35S]GTPgammaS binding in schizophrenia. Life Sci 2006; 78:1231–1237.
  • Scarr E, Sundram S, Keriakous D, Dean B. Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatry 2007; 61:1161–1170.
  • Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 1995; 38:22–33.
  • Court J, Spurden D, Lloyd S, . Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. J Neurochem 1999; 73:1590–1597.
  • Marutle A, Zhang X, Court J, . Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 2001; 22:115–126.
  • Martin-Ruiz CM, Haroutunian VH, Long P, . Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry 2003; 54:1222–1233.
  • Guan ZZ, Zhang X, Ravid R, Nordberg A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J Neurochem 2000; 74:237–243.
  • De Luca V, Likhodi O, Van Tol HH, Kennedy JL, Wong AH. Regulation of alpha7-nicotinic receptor subunit and alpha7-like gene expression in the prefrontal cortex of patients with bipolar disorder and schizophrenia. Acta Psychiatr Scand 2006; 114:211–215.
  • Durany N, Zochling R, Boissl KW, . Human post-mortem striatal a4b2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson's syndrome. Neurosci Lett 2000; 287:109–112.
  • Court JA, Piggott MA, Lloyd S, . Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease and in relation to neuroleptic medication. Neuroscience 2000; 98:79–87.
  • Breese CR, Lee MJ, Adams CE, . Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 2000; 23:351–364.
  • Mousavi M, Hellstrom-Lindahl E, Guan ZZ, Shan KR, Ravid R, Nordberg A. Protein and mRNA levels of nicotinic receptors in brain of tobacco using controls and patients with Alzheimer's disease. Neuroscience 2003; 122:515–520.
  • Leonard S, Breese C, Adams C, . Smoking and schizophrenia: abnormal nicotinic receptor expression. Eur J Pharmacol 2000; 393:237–242.
  • Meltzer HY, Moline R. Muscle abnormalities in acute psychoses. Arch Gen Psychiatry 1970; 23:481–491.
  • Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor. Trends Genet 2008; 24:375–378.
  • Chapman CG, Browne MJ. Isolation of the human ml (Hml) muscarinic acetylcholine receptor gene by PCR amplification. Nucleic Acids Res 1990; 18:2191.
  • McOmish CE, Burrows E, Howard M, . Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol Psychiatry 2008; 13:661–672.
  • Burmeister M, McInnis MG, Zollner S. Psychiatric genetics: progress amid controversy. Nat Rev Genet 2008; 9:527–540.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.