68
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Experimental Models of Partial Lesion of Rat Spinal Cord to Investigate Neurodegeneration, Glial Activation, and Behavior Impairments

, , &
Pages 137-165 | Received 21 Apr 2001, Published online: 07 Jul 2009

References

  • Baffour R., Achanta K., Kaufman J., Berman J., Garb J. L., Rhee S., Friedmann P. Synergistic effect of basic fibroblast growth factor and methylprednisolone on neurological function after experimental spinal cord injury. Journal of Neurosurgery 1995; 83: 105–110
  • Bamber N. I., Li H., Lu X., Oudega M., Aebischer P., Xu X. M. Neuro-trophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. European Journal of Neuroscience 2001; 13: 257–268
  • Basso D. M., Beattie M. S., Bresnahan J. C. Graded histological and locomo-tor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Experimental Neurology 1996; 139: 244–256
  • Baumann N., Van Baron E. A., Jacque C., Zalc B. Glial biology and disorders. Current Opinion in Neurology and Neurosurgery 1993; 6: 27–33
  • Beattie M. S., Bresnahan J. C., Komon J., Tovar C. A., Van M. M., Anderson D. K., Faden A. I., Hsu C. Y., Noble L. J., Salzman S., Young W. Endogenous repair after spinal cord contusion injuries in the rat. Experimental Neurology 1997; 148: 453–463
  • Beattie M. S., Farooqui A. A., Bresnahan J. C. Review of current evidence for apoptosis after spinal cord injury. Journal of Neurotrauma 2000; 17: 915–925
  • Boruch A. V., Conners J. J., Pipitone M., Deadwyler G., Storer P. D., Devries G. H., Jones K. J. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 2001; 33: 225–229
  • Bracken M. B., Shepard M. J., Holford T. R., Leo S. L., Aldrich E. F., Fazl M., Fehlings M. G., Herr D. L., Hitchon P. W., Marshall L. F., Nockels R. P., Pascale V., Perot P. L., Piepmeier J., Sonntag V. K., Wagner F., Wilberger J. E., Winn H. R., Young W. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. Journal of Neurosurgery 1998; 89: 699–706
  • Carlson S. L., Parrish M. E., Springer J. E., Doty K., Dossett L. Acute inflammatory response in spinal cord following impact injury. Experimental Neurology 1998; 151: 77–88
  • Cerutti S. M., Chadi G. 100 immunoreactivity is increased in reactive astro-cytes of the visual pathways following a mechanical lesion of the rat occipital cortex. Cell Biology International 2000; 24: 35–49
  • Chadi G., Moller A., Rosen L., Janson A. M., Agnati L. A., Goldstein M., Ogren S. O., Pettersson R. F., Fuxe K. Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion. Experimental Brain Research 1993a; 97: 145–158
  • Chadi G., Tinner B., Agnati L. F., Fuxe K. Basic fibroblast growth factor (bFGF. FGF-2) immunoreactivity exists in the noradrenaline, adrenaline and 5-HT nerve cells of the rat brain. Neuroscience Letters 1993b; 160: 171–176
  • Chadi G., Rosen L., Cintra A., Tinner B., Zoli M., Pettersson R. F., Fuxe K. Corticosterone increases FGF-2 (bFGF) immunoreactivity in the substantia nigra of the rat. Neuroreport 1993c; 4: 783–786
  • Chadi G., Cao Y., Pettersson R. F., Fuxe K. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamineinduced degeneration of the nigrostriatal dopamine neurons. Neuroscience 1994; 61: 891–910
  • Cheng H., Almstrom S., Gimenez L. L., Chang R., Ove O. S., Hoffer B., Olson L. Gait analysis of adult paraplegic rats after spinal cord repair. Experimental Neurology 1997; 148: 544–557
  • Chesler M., Sakatani K., Hassan A. Z. Elevation and clearance of extracellular K+ following contusion of the rat spinal cord. Brain Research 1991; 556: 71–77
  • Chesler M., Young W., Hassan A. Z., Sakatani K., Moriya T. Elevation and clearance of extracellular K+ following graded contusion of the rat spinal cord. Experimental Neurology 1994; 125: 93–98
  • Dijkstra S., Bar P. R., Gispen W. H., Joosten E. A. Selective stimulation of dendrite outgrowth from identified corticospinal neurons by homotopic astrocytes. Neuroscience 1999; 92: 1331–1342
  • Dohrmann G. J., Panjabi M. M., Wagner F. C. An apparatus for quantitating experimental spinal cord trauma. Surgical Neurology 1976; 5: 315–318
  • Dougherty K. D., Dreyfus C. F., Black I. B. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiology Disease 2000; 7: 574–585
  • Dusart I., Schwab M. E. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. European Journal of Neuroscience 1994; 6: 712–724
  • Fawcett J. W., Asher R. A. The glial scar and central nervous system repair. Brain Research Bulletins 1999; 49: 377–391
  • Ferguson I. A., Koide T., Rush R. A. Stimulation of corticospinal tract regeneration in the chronically injured spinal cord. European Journal of Neuroscience 2001; 13: 1059–1064
  • Follesa P., Wrathall I. R., Mocchetti I. Increased basic fibroblast growth factor mRNA following contusive spinal cord injury. Molecular Brain Research 1994; 22: 1–8
  • Fry E. J. Central nervous system regeneration: mission impossible?. Clinical and Experimental Pharmacology and Physiology 2001; 28: 253–258
  • Gale K., Kerasidis H., Wrathall J. R. Spinal cord contusion in the rat: behavioral analysis of functional necrologic impairment. Experimental Neurology 1985; 88: 123–134
  • Giulian D., Vaca K., Corpuz M. Brain glia release factors with opposing actions upon neuronal survival. Journal of Neuroscience 1993; 13: 29–37
  • Gold B. G. Neuroimmunophilin ligands: evaluation of their therapeutic potential for the treatment of neurological disorders. Expert Opinion on Investigation Drugs 2000; 9: 2331–2342
  • Gomide V. C., Chadi G. The trophic factors S-100beta and basic fibroblast growth factor are increased in the forebrain reactive astrocytes of adult callosotomized rat. Brain Research 1999; 835: 162–174
  • Grill R., Murai K., Blesch A., Gage F. H., Tuszynski M. H. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recover; after spinal cord injury. Journal of Neuroscience 1997; 17: 5560–5572
  • Gundersen H. J., Bagger P., Bendtsen T. F., Evans S. M., Korbo L., Marcussen N., Moller A., Nielsen K., Nyengeard J. R., Pakkenberg B., et al. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathologica Microbiologica et Immunologica Scandivica 1988; 96: 857–881
  • Homer P. J., Gage F. H. Regenerating the damaged central nervous system. Nature 2000; 407: 963–970
  • Houle J. D., Ye J. H. Survival of chronically-injured neurons can be prolonged by treatment with neurotrophic factors. Neuroscience 1999; 94: 929–936
  • Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. Journal of Histochemistry and Cytochemistry 1981; 29: 577–580
  • Imperao K. E., McKinney R. A., Schnell L., Rubin B. P., Schwab M. E. Local changes in vascular architecture following partial spinal cord lesion in the rat. Experimental Neurology 1997; 322–328
  • Koshinaga M., Whittemore S. R. The temporal and spatial activation of micro-glia in fiber tracts undergoing anterograde and retrograde degeneration following spinal cord lesion. Journal of Neurotrauma 1995; 12: 209–222
  • Li Y., Raisman G. Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Experimental Neurology 1995; 134: 102–111
  • Li Y., Field P. M., Raisman G. Regeneration of adult rat corticospinal axons induced by transplanted olfactory unsheathing cells. Journal of Neuroscience 1998; 18: 10514–24
  • Liu X. Z., Xu X. M., Hu R., Du C., Zhang S. X., McDonald J. W., Dong H. X., Wu Y. I., Fan G. S., Jacquin M. F., Hsu C. Y., Choi D. W. Neuronal and glial apcptosis after traumatic spinal cord injury. Journal of Neuroscience 1997; 17: 5395–5406
  • McKerracher L. Spinal cord repair: strategies to promote axon regeneration. Neurobiology Disease 2001; 8: 11–18
  • McMillian M. K., Thai L., Hong J. S., O'Callaghan J. P., Pennypacker K. R. Brain injury in a dish: a model for reactive gliosis. Trends in Neuroscience 1994; 17: 138–142
  • Namiku J., Kojima A., Tator C. H. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. Journal of Neurotrauma 2000; 17: 1219–1231
  • Nieto-Sampedro M. Neurite outgrowth inhibitors in gliotic tissue. Advances in Experimental Medicine and Biology 1999; 468: 207–224
  • Noble L. J., Wrathall J. R. Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord. Experimental Neurology 1985; 88: 135–149
  • Oudega M., Hagg T. Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Experimental Neurology 1996; 140: 218–229
  • Oudega M., Vargas C. G., Weber A. B., Kleitman N., Bunge M. B. Long-term effects of methylprednisolone following transection of adult rat spinal cord. European Journal of Neuroscience 1999; 11: 2453–2464
  • Paxinos G., Watson C. The rat brain: In stereotaxic coordinates. Hartcourt Brace Jovanovich, San Diego 1986
  • Popovich P. G. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Progress in Brain Research 1997; 128: 43–58
  • Popovich P. G., Guan Z., Wei P., Huitinga I., Van R. N., Stokes B. T. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuro-anatomical repair after experimental spinal cord injury. Experimental Neurology 1999; 158: 351–365
  • Prewitt C. M., Niesman I. R., Kane C. J., Houle J. D. Activated macrophage/ mieroglial cells can promote the regeneration of sensory axons into the injured spinal cord. Experimental Neurology 1997; 148: 433–443
  • Raineteau O., Schwab M. E. Plasticity of motor systems after incomplete spinal cord Injury. Nature Reviews Neuroscience 2001; 2: 263–273
  • Rodrigues R. W. P., Gomide V. C., Chadi G. Astroglial and mieroglial reaction after a partial nigrostriatal degeneration induced by the striatal injection of different doses of 6-hydroxydopamine. International Journal of Neuroscience 2001; 1–36
  • Runge V. M., Wells J. W., Baldwin S. A., Scheff S. W., Blades D. A. Evaluation of the temporal evolution of acute spinal cord injury. Investigative Radiology 1997; 32: 105–110
  • Schutte A., Yan Q., Mestres P., Giehl K. M. The endogenous survival promotion of axotomized rat corticospinal neurons by brain-derived neurotrophic factor is mediated via paracrine, rather than autocrine mechanisms. Neuroscience Letters 2000; 290: 185–188
  • Schwartz M. Autoimmune involvement in CNS trauma is beneficial if well controlled. Progress in Brain Research 2000; 128: 259–263
  • Schwartz M., Moalem G. Beneficial immune activity after CNS injury: prospects for vaccination. Journal of Neuroimmunology 2001; 113: 185–192
  • Sugawara T., Itoh Y., Mizoi K. Immunosuppressants promote adult dorsal root regeneration into the spinal cord. Neuroreport 1999; 10: 3949–3953
  • Tresco P. A. Tissue engineering strategies for nervous system repair. Progress in Brain Research 2000; 128: 349–363
  • Wang M. S., Gold B. G. FK506 increases the regeneration of spinal cord axons in a predegenerated peripheral nerve autograft. Journal of Spinal Cord Medicine 1999; 22: 287–296
  • West M. J., Gundersen H. J. Unbiased stereological estimation of the number of neurons in the human hippocampus. Journal of Comparative Neurology 1990; 296: 1–22
  • White R. J. Pathology of spinal cord injury in experimental lesions. Clinical Orthopaedics and Related Research 1975; 16–26
  • Wrathall J. R., Pettegrew R. K., Harvey F. Spinal cord contusion in the rat: production of graded, reproducible, injury groups. Experimental Neurology 1985; 851: 108–122
  • Young W. Rapid quantification of tissue damage for assessing acute spinal cord injury therapy. Journal of Neurotrauma 1992; 9: 151–153
  • Zhang Z., Krebs C. J., Guth L. Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Experimental Neurology 1997; 143: 141–152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.