172
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The Expression and Phosphorylation of Acid Sensing Ion Channel 1a in the Brain of a Mouse Model of Phenylketonuria

, , &
Pages 399-404 | Received 24 Nov 2010, Published online: 10 Jun 2011

REFERENCES

  • Arias, R. L., Sung, M. L. A., Vasylyev, D., Zhang, M. Y., Albinson, K., Kubek, K., (2008). Amiloride is neuroprotective in an MPTP model of Parkinson's disease. Neurobiology of Disease, 31(3), 334–341.
  • Biagini, G., Babinski, K., Avoli, M., Marcinkiewicz, M., & Seguela, P. (2001). Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiology of Disease, 8(1), 45–58.
  • Blau, N., van Spronsen, F. J., & Levy, H. L. (2010). Phenylketonuria. Lancet, 376(9750), 1417–1427.
  • Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory—long-term potentiation in the hippocampus. Nature, 361(6407), 31–39.
  • de Groot, M. J., Hoeksma, M., Blau, N., Reijngoud, D. J., & van Spronsen, F. J. (2010). Pathogenesis of cognitive dysfunction in phenylketonuria: Review of hypotheses. Molecular Genetics and Metabolism, 99(Suppl 1), S86–S89.
  • de la Rosa, D. A., Krueger, S. R., Kolar, A., Shao, D., Fitzsimonds, R. M., & Canessa, C. M. (2003). Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. Journal of Physiology-London, 546(Pt 1), 77–87.
  • Friese, M. A., Craner, M. J., Etzensperger, R., Vergo, S., Wemmie, J. A., Welsh, M. J., (2007). Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nature Medicine, 13(12), 1483–1489.
  • Gao, J., Duan, B., Wang, D. G., Deng, X. H., Zhang, G. Y., Xu, L., (2005). Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron, 48(4), 635–646.
  • Harlow, E. G., Till, S. M., Russell, T. A., Wijetunge, L. S., Kind, P., & Contractor, A. (2010). Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice. Neuron, 65(3), 385–398.
  • Horster, F., Schwab, M. A., Sauer, S. W., Pietz, J., Hoffmann, G. F., Okun, J. G., (2006). Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatric Research, 59(4 Pt 1), 544–548.
  • Leonard, A. S., Yermolaieva, O., Hruska-Hageman, A., Askwith, C. C., Price, M. P., Wemmie, J. A., (2003). cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 2029–2034.
  • Martynyuk, A. E., Ucar, D. A., Yang, D. D., Norman, W. M., Carney, P. R., Dennis, D. M., (2007). Epilepsy in phenylketonuria: A complex dependence on serum phenylalanine levels. Epilepsia, 48(6), 1143–1150.
  • Matalon, R., Surendran, S., McDonald, J. D., Okorodudu, A. O., Tyring, S. K., Michals-Matalon, K., (2005). Abnormal expression of genes associated with development and inflammation in the heart of mouse maternal phenylketonuria offspring. International Journal of Immunopathology and Pharmacology, 18(3), 557–565.
  • Sitta, A., Barschak, A. G., Deon, M., Terroso, T., Pires, R., Giugliani, R., (2006). Investigation of oxidative stress parameters in treated phenylketonuric patients. Metabolic Brain Disease, 21(4), 287–296.
  • Taylor, E. H., & Hommes, F. A. (1983). Effect of experimental hyperphenylalaninemia on myelin metabolism at later stages of brain development. The International Journal of Neuroscience, 20(3–4), 217–227.
  • van Spronsen, F. J. (2010). Phenylketonuria: A 21st century perspective. Nature Reviews Endocrinology, 6(9), 509–514.
  • van Spronsen, F. J., Hoeksma, M., & Reijngoud, D. J. (2009). Brain dysfunction in phenylketonuria: Is phenylalanine toxicity the only possible cause? Journal of Inherited Metabolic Disease, 32(1), 46–51.
  • Voilley, N., de Weille, J., Mamet, J., & Lazdunski, M. (2001). Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. Journal of Neuroscience, 21(20), 8026–8033.
  • Wemmie, J. A., Chen, J. G., Askwith, C. C., Hruska-Hageman, A. M., Price, M. P., Nolan, B. C., (2002). The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron, 34(3), 463–477.
  • Wemmie, J. A., Price, M. P., & Welsh, M. J. (2006). Acid-sensing ion channels: Advances, questions and therapeutic opportunities. Trends in Neurosciences, 29(10), 578–586.
  • Wong, H. K., Bauer, P. O., Kurosawa, M., Goswami, A., Washizu, C., Machida, Y., (2008). Blocking acid-sensing ion channel 1 alleviates Huntington's disease pathology via an ubiquitin-proteasome system-dependent mechanism. Human Molecular Genetics, 17(20), 3223–3235.
  • Xiong, Z. G., Zhu, X. M., Chu, X. P., Minami, M., Hey, J., Wei, W. L., (2004). Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell, 118(6), 687–698.
  • Xu, T. L., & Xiong, Z. G. (2007). Dynamic regulation of acid-sensing ion channels by extracellular and intracellular modulators. Current Medicinal Chemistry, 14(16), 1753–1763.
  • Yu, Y. G., Tang, F. G., Pan, J., & Gu, X. F. (2007). Effects of phenylalanine and its metabolites on cytoplasmic free calcium in cortical neurons. Neurochemical Research, 32(8), 1292–1301.
  • Zagreda, L., Goodman, J., Druin, D. P., McDonald, D., & Diamond, A. (1999). Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. Journal of Neuroscience, 19(14), 6175–6182.
  • Zha, X. M., Wemmie, J. A., Green, S. H., & Welsh, M. J. (2006). Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16556–16561.
  • Zhang, H., & Gu, X. F. (2005). A study of gene expression profiles of cultured embryonic rat neurons induced by phenylalanine. Metabolic Brain Disease, 20(1), 61–72.
  • Zhang, Y. J., Zhang, H. W., Yuan, X. B., & Gu, X. F. (2007). Differential effects of phenylalanine on Rac1, Cdc42, and RhoA expression and activity in cultured cortical neurons. Pediatric Research, 62(1), 8–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.