678
Views
50
CrossRef citations to date
0
Altmetric
Review

NMDARs in neurological diseases: a potential therapeutic target

, , , , &
Pages 315-327 | Received 11 Feb 2014, Accepted 30 Jun 2014, Published online: 30 Jul 2014

References

  • Bordi F, Ugolini A. Group I metabotropic glutamate receptors: implications for brain diseases. Prog Neurobiol 1999;59(1):55–79.
  • Kvist T, Greenwood JR, Hansen KB, et al. Structure-based discovery of antagonists for GluN3-containing N-methyl-d-aspartate receptors. Neuropharmacology 2013;75:324–36.
  • Kiss L, Cheng G, Bednar B, et al. In vitro characterization of novel NR2B selective NMDA receptor antagonists. Neurochem Int 2005;46(6):453–64.
  • Mugnaini M, Dal Forno G, Corsi M, Bunnemann B. Receptor binding characteristics of the novel NMDA receptor glycine site antagonist 3H]GV150526A in rat cerebral cortical membranes. Eur J Pharmacol 2000;391(3):233–41.
  • Kiss JP, Szasz BK, Fodor L, et al. GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem Int 2012;60(2):170–6.
  • Mellone M, Gardoni F. Modulation of NMDA receptor at the synapse: promising therapeutic interventions in disorders of the nervous system. Eur J Pharmacol 2013;719(1–3):75–83.
  • Stys PK, Lipton SA. White matter NMDA receptors: an unexpected new therapeutic target? Trends Pharmacol Sci 2007;28(11):561–6.
  • Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacology. Trends Pharmacol Sci 2011;32(12):726–33.
  • Gubellini P, Pisani A, Centonze D, et al. Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological disorders. Prog Neurobiol 2004;74(5):271–300.
  • Liu SB, Zhao MG. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors. Brain Res Bull 2013;93:27–31.
  • Du J, Zhou S, Carlton SM. Kainate-induced excitation and sensitization of nociceptors in normal and inflamed rat glabrous skin. Neuroscience 2006;137(3):999–1013.
  • Feldmann N, del Rio RM, Gjinovci A, et al. Reduction of plasma membrane glutamate transport potentiates insulin but not glucagon secretion in pancreatic islet cells. Mol Cell Endocrinol 2011;338(1–2):46–57.
  • Moriyama Y, Hayashi M. Glutamate-mediated signaling in the islets of Langerhans: a thread entangled. Trends Pharmacol Sci 2003;24(10):511–7.
  • Gill SS, Pulido OM, Mueller RW, McGuire PF. Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull 1998;46(5):429–34.
  • Szczesniak AM, Gilbert RW, Mukhida M, Anderson GI. Mechanical loading modulates glutamate receptor subunit expression in bone. Bone 2005;37(1):63–73.
  • Klein T, Magerl W, Nickel U, et al. Effects of the NMDA-receptor antagonist ketamine on perceptual correlates of long-term potentiation within the nociceptive system. Neuropharmacology 2007;52(2):655–61.
  • Spencer GJ, McGrath CJ, Genever PG. Current perspectives on NMDA-type glutamate signaling in bone. Int J Biochem Cell B 2007;39:1089–104.
  • Chung C. NMDA receptor as a newly identified member of the metabotropic glutamate receptor family: clinical implications for neurodegenerative diseases. Mol Cells 2013;36:99–104.
  • Li ST, Ju JG. Functional roles of synaptic and extrasynaptic NMDA receptors in physiological and pathological neuronal activities. Curr Drug Targets 2012;13(2):207–21.
  • Lalo U, Pankratov Y, Parpura V, Verkhratsky A. Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 2011;1813(5):992–1002.
  • Kopach O, Voitenko N. Extrasynaptic AMPA receptors in the dorsal horn: evidence and functional significance. Brain Res Bull 2013;93:47–56.
  • De Souza CF, Kalloniatis M, Polkinghorne PJ, et al. Functional activation of glutamate ionotropic receptors in the human peripheral retina. Exp Eye Res 2012;94(1):71–84.
  • Barbalho CA, Nunes-de-Souza RL, Canto-de-Souza A. Similar anxiolytic-like effects following intra-amygdala infusions of benzodiazepine receptor agonist and antagonist: evidence for the release of an endogenous benzodiazepine inverse agonist in mice exposed to elevated plus-maze test. Brain Res 2009;1267:65–76.
  • Karcz-Kubicha M, Jessa M, Nazar M, et al. Anxiolytic activity of glycine-B antagonist and partial agonist: no relation to intrinsic activity in the patch clamp. Neuropharmacology 1997;36(10):1355–67.
  • Inta D, Vogt MA, Pfeiffer N, et al. Dichotomy in the anxiolytic versus antidepressant effect of C-terminal truncation of the GluN2A subunit of NMDA receptors. Behav Brain Res 2013;247:227–31.
  • Li S-X, Fujita Y, Zhang J-C, et al. Role of the NMDA receptor in cognitive deficits, anxiety and depressive-like behavior in juvenile and adult mice after neonatal dexamethasone exposure. Neurobiol Dis 2014;62:124–34.
  • Kew JN, Koester A, Moreau JL, et al. Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. J Neurosci 2000;20(11):4037–49.
  • Gatch Wallis CJ, Lal H. Effects of NMDA antagonists on ethanol withdrawal induced ‘‘anxiety’’ in the elevated plus maze. Alcohol 1999;19(3):207–11.
  • Adamec RE, Burton P, Shallow T, Budgell J. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure–implications for anxiety associated with posttraumatic stress disorder. J Physiol Behav 1999;65(4–5):723–37.
  • Pilc A, Wierońska JM, Skolnick P. Glutamate-based antidepressants: preclinical psychopharmacology. Biol Psychiatry 2013;73(12):1125–32.
  • Rodriguez M, Sabate M, Rodriguez-Sabate C, Morales I. The role of non-synaptic extracellular glutamate. Brain Res Bull 2013;93:17–26.
  • Zhang L, Xu T, Wang S, et al. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Prog Neuro-Psychoph 2013;40:12–7.
  • Petrie RX, Reid IC, Stewart CA. The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder: a critical review. Pharmacol Ther 2000;87(1):11–25.
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47(4):351–4.
  • Belforte JE, Zsiros V, Sklar ER, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 2010;13:76–83.
  • Gandal MJ, Edgar JC, Klook K, Siegel SJ. Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 2012;62:1504–18.
  • Kisfali M, Lőrincz T, Sylvester Vizi E. Comparison of Ca2+ transients and Ca2+]i in the dendrites and boutons of non-fast-spiking GABAergic hippocampal interneurons using two-photon laser microscopy and high- and low-affinity dyes. J Physiol-London 2013;591(22):5541–53.
  • McNally JM, McCarley RW, Brown RE. Impaired GABAergic neurotransmission in schizophrenia underlies impairments in cortical gamma band oscillations. Curr Psychiatry Rep 2013;15(3):346.
  • Amalric M, Lopez S, Goudet C, et al. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson's disease. Neuropharmacology 2013;66:53–64.
  • Ishimaru MJ, Toru M. The glutamate hypothesis of schizophrenia: therapeutic implications. CNS Drugs 1997;7(1):47–67.
  • Nishiguchi N, Shirakawa O, Ono H, et al. Novel polymorphism in the gene region encoding the carboxyl-terminal intracellular domain of the NMDA receptor 2B subunit: analysis of association with schizophrenia. Am J Psychiatry 2000;157(8):1329–31.
  • Gao XM, Sakai K, Roberts RC, et al. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 2000;157(7):1141–9.
  • Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 2000;31(2–3):288–94.
  • Ruppin E. NMDA receptor delayed maturation and schizophrenia. Med Hypotheses 2000;54(5):693–7.
  • Szczurowska E, Mareš P. NMDA and AMPA receptors: development and status epilepticus. Physiol Res. 2013;62(Suppl 1):S21–38.
  • Łukawski K, Jakubus T, Janowska A, Czuczwar SJ. Interactions between ACE inhibitors and classical antiepileptic drugs in the mouse maximal electroshock seizures. Pharmacol Biochem Behav 2011;100(1):152–6.
  • Loscher W, Honack D. Effects of the competitive NMDA receptor antagonist, CGP-37847, on anticonvulsivant activity and adverse effects of valproate in amygdala-kindled rats. Eur J Pharmacol 1993;234:237–45.
  • Najm IM, Ying Z, Babb T, et al. Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia 2000;41(8):971–6.
  • Liu CH, Cherng CH, Lin SL, et al. N-methyl-D-aspartate receptor antagonist MK-801 suppresses glial pro-inflammatory cytokine expression in morphine-tolerant rats. Pharmacol Biochem Behav 2011;99(3):371–80.
  • Tiseo PJ, Inturrisini CE. Attenuation and reversal morphine tolerance by the competitive N-methyl-D-aspartate receptor antagonist, LY 274614. J Pharmacol Exp Ther 1993;264(3):1090–6.
  • Price DD, Mayer DJ, Mao J, Caruso FS. NMDA-receptor antagonists and opioid receptor interactions as related to analgesia and tolerance. J Pain Symptom Manag 2000;19(1 Suppl):S7–11.
  • Bespalov AY, Zvartau EE, Beardsley PM. Opioid-NMDA receptor interactions may clarify conditioned (associative) components of opioid analgesic tolerance. Neurosci Biobehav Rev 2001;25(4):343–53.
  • Hingne PM, Sluka KA. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats. J Pain 2008;9(3):217–25.
  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Berrocoso E, Garzón J. The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. Eur J Pharmacol 2013;716(1–3):94–105.
  • Noda Y, Nabeshima T. Opiate physical dependence and N-methyl-D-aspartate receptors. Eur J Pharmacol 2004;500(1–3):121–8.
  • Herman BH, Vocci F, Bridge P. The effects of NMDA receptor antagonists and nitric oxide synthase inhibitors on opioid tolerance and withdrawal: medication development issues for opiate addiction. Neuropsychopharmacology 1995;13(4):269–93.
  • Trujillo KA. Effects of noncompetitive N-methyl-D-aspartate receptor antagonists on opiate tolerance and physical dependence. Neuropsychopharmacology 1995;13(4):301–7.
  • Bespalov AY, Balster RL, Beardsley PM. N-Methyl-D-aspartate receptor antagonists and the development of tolerance to the discriminative stimulus effects of morphine in rats. J Pharmacol Exp Ther 1999;290(1):20–7.
  • Zhu H, Barr GA. Ontogeny of NMDA receptor-mediated morphine tolerance in the postnatal rat. Pain 2003;104(3):437–47.
  • Johnston IN, Westbrook RF. Inhibition of morphine analgesia by LPS: role of opioid and NMDA receptors and spinal glia. Behav Brain Res 2005;156(1):75–83.
  • Parsons CG. NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 2001;429(1–3):71–8.
  • Pelissier T, Infante C, Constandil L, et al. Antinociceptive effect and interaction of uncompetitive and competitive NMDA receptor antagonists upon capsaicin and paw pressure testing in normal and monoarthritic rats. Pain 2008;134(1–2):113–27.
  • Hewitt DJ. The use of NMDA-receptor antagonists in the treatment of chronic pain. Clin J Pain 2000;16(2 Suppl):S73–9.
  • Chiang JS. New developments in cancer pain therapy. Acta Anaesthesiol Sin 2000;38(1):31–6.
  • Smothers CT, Woodward JJ. Effect of the NR3 subunit on ethanol inhibition of recombinant NMDA receptors. Brain Res 2003;987(1):117–21.
  • Kotlinska J, Bochenski M. The influence of various glutamate receptors antagonists on anxiety-like effect of ethanol withdrawal in a plus-maze test in rats. Eur J Pharmacol 2008;598(1–3):57–63.
  • Devaud LL, Morrow AL. Gender-selective effects of ethanol dependence on NMDA receptor subunit expression in cerebral cortex, hippocampus and hypothalamus. Eur J Pharmacol 1999;369(3):331–4.
  • Narita M, Soma M, Narita M, et al. Implications of the NR2B subunit-containing NMDA receptor localized in mouse limbic forebrain in ethanol dependence. Eur J Pharmacol 2000;401(2):191–5.
  • Nagy J, Horváth C, Farkas S, et al. NR2B subunit selective NMDA antagonists inhibit neurotoxic effect of alcohol-withdrawal in primary cultures of rat cortical neurones. Neurochem Int 2004;44:17–23.
  • Maler JM, Esselmann H, Wiltfang J, et al. Memantine inhibits ethanol-induced NMDA receptor up-regulation in rat hippocampal neurons. Brain Res 2005;1052(2):156–62.
  • Stromberg MF, Volpicelli JR, O’brien CP, Mackler SA. The NMDA receptor partial agonist, 1-aminocyclopropanecarboxylic acid (ACPC), reduces ethanol consumption in the rat. Pharmacol Biochem Behav 1999;64(3):585–90.
  • Wirkner K, Poelchen W, Köles L, et al. Ethanol-induced inhibition of NMDA receptor channels. Neurochem Int 1999;35(2):153–62.
  • Popp RL, Dertien JS. Actin depolymerization contributes to ethanol inhibition of NMDA receptors in primary cultured cerebellar granule cells. Alcohol 2008;42(7):525–39.
  • Otton HJ, Janssen A, O’Leary T, et al. Inhibition of rat recombinant GluN1/GluN2A and GluN1/GluN2B NMDA receptors by ethanol at concentrations based on the US/UK drink-drive limit. Eur J Pharmacol 2009;614(1–3):14–21.
  • Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington's disease. Prog Neurobiol 2010;90(2):230–45.
  • Yoshikawa K, Kita Y, Furukawa A, et al. Excitotoxicity-induced immediate surge in hippocampal prostanoid production has latent effects that promote chronic progressive neuronal death. Prostaglandins Leukot Essent Fatty Acids 2013;88(5):373–81.
  • Levine MS, Klapstein GJ, Koppel A, et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. J Neurosci Res 1999;58(4):515–32.
  • Kumar U, Asotra K, Patel SC, Patel YC. Expression of NMDA receptor-1 (NR1) and huntingtin in striatal neurons which colocalize somatostatin, neuropeptide Y, and NADPH diaphorase: a double-label histochemical and immunohistochemical study. Exp Neurol 1997;145(2 Pt 1):412–24.
  • Chen N, Luo T, Wellington C, et al. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 1999;72(5):1890–8.
  • Fan MMY, Raymond LA. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Prog Neurobiol 2007;81:272–93.
  • Dau A, Gladding CM, Sepers MD, Raymond LA. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis 2014;62:533–42.
  • Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2014;115:157–88.
  • Newell DW, Barth A, Malouf AT. Glycine site NMDA receptor antagonist provides protection against ischemia-induced neuronal damage in hippocampal slices culture. Brain Res 1995;675(1–2):38–44.
  • Bonde C, Noraberg J, Noer H, Zimmer J. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures. Neuroscience 2005;136(3):779–94.
  • Arias RL, Tasse JRP, Bowlby MR. Neuroprotective interaction effects of NMDA and AMPA receptor antagonists in an in vitro model of cerebral ischemia. Brain Res 1999;816(2):299–308.
  • Bao WL, Williams AJ, Faden AI, Tortella FC. Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res 2001;922(2):173–9.
  • Zhang QG, Wang RM, Han D, et al. Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk. Neurosci Res 2009;63:205–12.
  • Jander S, Schroeter M, Stoll GJ. Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia. J Neuroimmunol 2000;109(2):181–7.
  • Calabresi P, Centonze D, Cupini LM, et al. Ionotropic glutamate receptors: still a target for neuroprotection in brain ischemia? Insights from in vitro studies. Neurobiol Dis 2003;12(1):82–8.
  • Que M, Schiene K, Witte OW, Zilles K. Widespread up-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain. Neurosci Lett 1999;273(2):77–80.
  • Devos D, Moreau C, Dujardin K, et al. New pharmacological options for treating advanced Parkinson's disease. Clin Ther 2013;35(10):1640–52.
  • Dunah AW, Wang Y, Yasuda RP, et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson's disease. Mol Pharmacol 2000;57(2):342–52.
  • Allain H, Bentué-Ferrer D, Akwa Y. Disease-modifying drugs and Parkinson's disease. Prog Neurobiol 2008;84(1):25–39.
  • Tang YP, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice. Nature 1999;401(6748):63–9.
  • Takagi N, Logan R, Teves L, et al. Altered interaction between PSD-95 and the NMDA receptor following transient global ischemia. J Neurochem 2000;74(1):169–78.
  • Cammarota M, Bevilaqua LR, Ardenghi P, et al. Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Brain Res Mol Brain Res 2000;76(1):36–46.
  • Pláteník J, Kuramoto N, Yoneda Y. Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci 2000;67(4):335–64.
  • Roesler R, Vianna MR, De-Paris F, et al. NMDA receptor antagonism in the basolateral amygdala blocks enhancement of inhibitory avoidance learning in previously trained rats. Behav Brain Res 2000;112:99–105.
  • Liu DD, Yang Q, Li ST. Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull 2013;93:10–6.
  • Escobar ML, Bermúdez-Rattoni F. Long-term potentiation in the insular cortex enhances conditioned taste aversion retention. Brain Res 2000;852(1):208–12.
  • Zelena D, Makara GB, Jezova D. Simultaneous blockade of two glutamate receptor subtypes (NMDA and AMPA) results in stressor-specific inhibition of prolactin and corticotropin release. Neuroendocrinology 1999;69(5):316–23.
  • Nag N, Mellott TJ, Berger-Sweeney JE. Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res 2008;1237:101–9.
  • Moriya T, Takahashi S, Ikeda M, et al. N-methyl-D-aspartate receptor subtype 2C is not involved in circadian oscillation or photoic entrainment of the biological clock in mice. J Neurosci Res 2000;61(6):663–73.
  • Blatt GJ, Fitzgerald CM, Guptill JT, et al. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 2001;31(6):537–43.
  • Johnston MV, Jeon OH, Pevsner J, et al. Neurobiology of Rett syndrome: a genetic disorder of synapse development. Brain Develop 2001;23:S206–13.
  • Purcell AE, Jeon OH, Zimmerman AW, et al. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001;57(9):1618–28.
  • González J, Lareo LR, Corredor C. In silico identification of alternate splice variants of human GRIN2B gene. A decade of neuroinformatics. Looking Ahead; 2004 Apr 26 & 27; Bethesda, Maryland.
  • Scarpini E, Scheltens P, Feldman H. Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol 2003;2(9):539–47.
  • Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 2006;17(5–6):411–24.
  • Hu NW, Ondrejcak T, Rowan MJ. Glutamate receptors in preclinical research on Alzheimer's disease: update on recent advances. Pharmacol Biochem Behav 2012;100(4):855–62.
  • Noshita T, Murayama N, Oka T, et al. Effect of bFGF on neuronal damage induced by sequential treatment of amyloid β and excitatory amino acid in vitro and in vivo. Eur J Pharmacol 2012;695(1–3):76–82.
  • Francis PT, Sims NR, Procter AW, Bowen DM. Cortical pyramidal neurone loss may cause glutamatergic hyperactivity and cognitive impairments in Alzheimer's disease: investigative and therapeutics perspectives. J Neurochem 1993;60:1589–604.
  • Scheuer K, Maras A, Gattaz WF, et al. Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer's disease. Dementia 1996;7(4):210–4.
  • Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 2004;44(4):275–95.
  • Albarracin SL, Stab B, Casas Z, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 2012;15(1):1–9.
  • Mancuso C, Bates TE, Butterfield DA, et al. Natural antioxidants in Alzheimer's disease. Expert Opin Invest Drugs 2007;16(12):1921–31.
  • Butterfield D, Castegna A, Pocernich C, et al. Nutritional approaches to combat oxidative stress in Alzheimer's disease. J Nutr Biochem 2002;13(8):444–61.
  • Chan PH, Chen J, Gafni J, et al. N-methyl-D-aspartate-mediated neurotoxicity is associated with oxygen-derived free radicals. Cerebrovasc Dis 1995;14(1):153–63.
  • Lipton SA. NMDA receptor activity regulates transcription of antioxidant pathways. Nat Neurosci 2008;11(4):381–2.
  • Sutachan JJ, Casas Z, Albarracin SL, et al. Cellular and molecular mechanisms of antioxidants in Parkinson's disease. Nutr Neurosci 2012;15(3):120–6.
  • Nash JE, Fox SH, Henry B, et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson's disease. Exp Neurol 2000;165(1):136–42.
  • Koutsilieri E, Riederer P. Excitotoxicity and new antiglutamatergic strategies in Parkinson's disease and Alzheimer's disease. Parkinsonism Relat Disord 2007;13(Suppl 3):S329–31.
  • Lynch DR, Guttmann RP. Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J Pharmacol Exp Ther 2002;300(3):717–23.
  • Hallett PJ, Standaert DG. Rationale for and use of NMDA receptor antagonists in Parkinson's disease. Pharmacol Therapeut 2004;102:155–174.
  • Sarre S, Lanza M, Makovec F, et al. In vivo neurochemical effects of the NR2B selective NMDA receptor antagonist CR 3394 in 6-hydroxydopamine lesioned rats. Eur J Pharmacol 2008;584(2–3):297–305.
  • Löschmann PA, De Groote C, Smith L, et al. Antiparkinsonian activity of Ro 25–6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson's disease. Exp Neurol 2004;187(1):86–93.
  • Armentero MT, Fancellu R, Nappi G, et al. Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson's disease. Neurobiol Dis 2006;22(1):1–9.
  • Mitchell IJ, Hughes N, Carroll CB, Brotchie JM. Reversal of parkinsonian symptoms by intrastriatal and systemic manipulations of excitatory amino acid and dopamine transmission in the bilateral 6-OHDA lesioned marmoset. Behav Pharmacol 1995;6(5–6):492–507.
  • Rasheed N, Ahmad A, Al-Sheeha M, et al. Neuroprotective and anti-stress effect of A68930 in acute and chronic unpredictable stress model in rats. Neurosci Lett 2011;504(2):151–5.
  • Johnson SW, Wu YN. Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Res 2004;1019(1–2):293–6.
  • Vidal L, Durán R, Faro LF, et al. Protection from inorganic mercury effects on the in vivo dopamine release by ionotropic glutamate receptor antagonists and nitric oxide synthase inhibitors. Toxicology 2007;238(2–3):140–6.
  • Cepeda C, Colwell CS, Itri JN, et al. Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 1998;79(1):82–94.
  • Herin G, Du S, Aizenman E. The neuroprotective agent ebselen modifies NMDA receptor function via the redox modulatory site. J Neurochem 2001;78(6):1307–14.
  • Ferrante RJ, Andreassen OA, Dedeoglu A, et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J Neurosci 2002;22(5):1592–9.
  • Zeron MM, Fernandes HB, Krebs C, et al. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2004;25(3):469–79.
  • Galpern WR, Cudkowicz ME. Coenzyme Q treatment of neurodegenerative diseases of aging. Mitochondrion 2007;7:S146–53.
  • Zhu H, Santo A, Li Y. The antioxidant enzyme peroxiredoxin and its protective role in neurological disorders. Exp Biol Med 2012;237(2):143–9.
  • Tsai RY, Chou KY, Shen CH, et al. Resveratrol regulates N-methyl-D-aspartate receptor expression and suppresses neuroinflammation in morphine-tolerant rats. Anesth Analg 2012;115(4):944–52.
  • El Arfani A, Bentea E, Aourz N, et al. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-Parkinson rats. Neuropharmacology 2014;85C:198–205.
  • Morelli M, Fenu S, Pinna A, Di Chiara G. Opposite effects of NMDA receptor blockade on dopaminergic D1- and D2-mediated behavior in the 6-hydroxydopamine model of turning: relationship with c-fos expression. J Pharmacol Exp Ther 1992;260(1):402–8.
  • Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, antagonist of NR2B subunit-containing N-methyl-D-aspartate receptors. Exp Neurol 2000;163(1):239–43.
  • Uitti R, Rajput A, Ahlskog J, et al. Amantadine treatment is an independent predictor of improved survival in Parkinson's disease. Neurology 1996;46(6):1551–6.
  • Del Dotto P, Pavese N, Gambaccini G, et al. Intravenous amantadine improves levodopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001;16(3):515–20.
  • Verhagen Metman L, Blanchet PJ, van den Munckhof P, et al. A trial of dextromethorphan in parkinsonian patients with motor response complications. Mov Disord 1998;13(3):414–7.
  • Carrillo-Mora P, Silva-Adaya D, Villaseñor-Aguayo K. Glutamate in Parkinson's disease: role of antiglutamatergic drugs. Basal Ganglia 2013;3(3):147–57.
  • Wessell RH, Ahmed SM, Menniti FS, et al. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology 2004;47(2):184–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.