2
Views
6
CrossRef citations to date
0
Altmetric
Original Article

The response of individual nucleus raphe magnus neurons to microinjections of met-enkephalin at midbrain and at bulbar loci: Evidence for midbrain-bulbar convergence on individual raphe neurons

Pages 165-173 | Received 17 Jul 1986, Published online: 07 Jul 2009

References

  • Abols I. A., Basbaum A. I. Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain medullary interaction in the modulation of pain. Journal of Comparative Neurology 1981; 201: 285–297
  • Akaike A., Shibata T., Satoh M., Takagi H. Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology 1978; 17: 775–778
  • Azami J., Llewelyn M. B., Roberts M. H. T. The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Pain 1982; 12: 229–246
  • Basbaum A. I., Fields H. L. The origin of decending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation. Journal of Comparative Neurology 1979; 187: 513–532
  • Basbaum A. I., Marley N. J. E., O'Keefe J., Clanton C. H. Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain 1977; 3: 43–56
  • Behbehani M. M., Fields H. L. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia. Brain Research 1979; 170: 85–93
  • Behbehani M. M., Pomeroy S. L. Effect of morphine injected in periaqueductal gray on the activity of single units in nucleus raphe magnus of the rat. Brain Research 1978; 149: 226–269
  • Beitz A. J. The nuclei of origin of brain stem enkephalin and substance P projections to the rodent nucleus raphe magnus. Neuroscience 1982a; 7: 2753–2768
  • Beitz A. J. The sites of origin of brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. Journal of Neuroscience 1982b; 2: 829–842
  • Beitz A. J. The organization of afferent projections to the midbrain periaqueductal gray of the cat. Neuroscience 1982c; 7: 133–159
  • Bowker R. W., Steinbusch H. W. M., Coulter J. D. Serotonergic and peptidergic projections to the spinal cord emonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. Brain Research 1981; 211: 412–417
  • Carlton S. J., Leichnetz G. R., Young E. G., Mayer D. J. Supramedullary afferents of the nucleus raphe magnus in the rat: A study using the transcannula HRP gel and autoradiographic techiques. Journal of Neurology 1983; 214: 43–58
  • Carstens E., Fraunhoffer M., Zimmerman M. Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, of spinal nociceptive transmission in the rat. Pain 1981; 10: 149–167
  • Chang J., Fon B. T. W., Pert A., Pert C. B. Opiate receptor affinities and behavioral effect of enkephalin: Structure-activity relationship of synthetic peptide analogues. Life Sciences 1976; 18: 1473–1482
  • Dahlstrom A., Fuxe K. Evidence for the existance of monoamine containing neurons in the central nervous system—I. Demostration of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandanavica 1964; 62: 1–55, Suppl. 232
  • Davies J., Dray A. Pharmacological and electrophysiological studies of morphine and enkephalin on rat supraspinal neurones and cat spinal neurones. British Journal of Pharmacology 1978; 63: 87–96
  • Fields H. L., Anderson S. D. Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesia. Pain 1978; 5: 333–349
  • Fields H. L., Basbaum A. I. Brainstem control of spinal pain transmission neurons. Annual Review of Physiology 1978; 40: 217–248
  • Fifkova E., Marsala J. Stereotaxic atlases for the cat, rabbit, and rat. Electrophysiological methods in biological research, J. Bures, M. Petran, J. Zacher. Academia, Prague 1967; 653–671, 1967
  • Frederickson R. C. A., Geary L. E. Endogenous opioid peptides. Review of physiological, pharmacological and clinical aspects. Progress in Neurobiology 1982; 19: 19–69
  • Frederickson R. C. A., Norris F. H. Enkephalin-induced depression of single neurons in brain areas with opiate receptors-antagonism by naloxone. Science 1976; 194: 440–442
  • Gallaoher D. W., Pert A. Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontic caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Research 1978; 144: 257–275
  • Gent J. P., Wolstencroft J. H. Effect of methionine-enkephalin and leucine-enkephalin compared with those of morphine on brainstem neurons in cat. Nature 1976; 261: 426–427
  • Heinricher M. M., Rosenfeld J. P. Microinjection of morphine into nucleus reticularis paragigantocellularis of the rat suppresses spontaneous activity of nucleus raphe magnus neurons. Brain Research 1983; 272: 382–386
  • Lord J. A. H., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: Multiple agonists and receptors. Nature 1977; 267: 495–499
  • Malick J. B., Goldstein J. M. Analgesic activity of enkephalins following intracerebral administration in the rat. Life Sciences 1977; 20: 827–832
  • Pomeroy S. L., Behbehani M. M. Physiological evidence for a projection from periaqueductal gray to nucleus raphe magnus in the rat. Brain Research 1979; 176: 143–147
  • Prieto G. J., Cannon J. T., Liebeskind J. C. Nucleus raphe magnus lesions disrupt stimulation produced analgesia from ventral but not dorsal midbrain areas in the rat. Brain Research 1983; 261: 53–57
  • Rosenfeld J. P., Stocco S. Differential effects of systemic versus intracranial injection of opiates on central, orofacial, and lower body nociception: Somatotypy in bulbar analgesia systems. Pain 1980; 9: 307–318
  • Rosenfeld J. P., Stocco S. Effects of midbrain, bulbar and combined morphine microinjections and systemic injections on orofacial nociception and rostral trigeminal stimulation: Independent midbrain and bulbar opiate analgesia systems. Brain Research 1981; 215: 342–348
  • Satoh M., Akaike A., Takagi H. Excitation by morphine and enkephalin of single neurons of nucleus reticularis paragigantocellularis in the rat: A probable mechanism of analgesic action of opioids. Brain Research 1979; 169: 406–410
  • Schurr A., Rigor B. M., Ho B. T., Dafny N. Periaqueductal gray neurons response to microiontophoretically injected morphine in naive and morphine-dependent rats. Brain Research Bulletin 1981; 6: 473–478
  • Shah Y., Dostrovsky J. P. Electrophysiological evidence for a projection of the periaqueductal gray matter to nucleus raphe magnus in cat and rat. Brain Research 1980; 193: 534–538
  • Takagi H., Satoh M., Akaike A., Shibata T., Yajima H., Ojawa H. Analgesia by enkephalins injected into the nucleus reticularis gigantocellularis of rat medulla oblongata. European Journal of Pharmacology 1978; 49: 113–116
  • Watkins L. R., Griffin G., Leichnetz G. R., Mayer D. J. The somatotopic organization of the nucleus raphe magnus and surrounding brain stem structures as revealed by HRP slow-release gels. Brain Research 1980; 181: 1–15
  • Wuster M., Schulz R., Herz A. Specificity of opioids towards the u-, ?- and ?-opiate receptors. Neuroscience Letters 1979; 15: 193–198
  • Yaksh T. L. Central nervous systems sites mediating opiate analgesia. Advances in pain research and therapy, J. Bonica. Raven Press, New York 1979; Vol. 3: 411–426
  • Yaksh T. L. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Research 1979; 169: 180–185
  • Yaksh T. L., Rudy T. A. Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 1978; 4: 299–359
  • Yaksh T. L., Tyce G. M. Microinjection of morphine into the periqueductal gray evokes the release of serotonin from spinal cord. Brain Research 1979; 171: 176–181

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.