6
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Phencyclidine Treatments Differentially Affect Dopamine and D-Aspartate Release from Frontal Cortical and Striatal Slices from Mice

, , &
Pages 69-81 | Received 23 Aug 1991, Published online: 07 Jul 2009

References

  • Aanonsen L. M., Wilcox G. L. Phencyclidine selectively blocks a spinal action of N-methyl-D-aspartate in mice. Neuroscience Letters 1986; 67: 191–197
  • Abarca J., Bustos G. Release of D-[3H]aspartic acid from the rat substantia nigra: effect of veratridine-evoked depolarization and cortical ablation. Neurochemistry International 1985; 7: 229–236
  • Aquayo L. G., Warnick J. E., Maayani S., Glick S. D., Weinstein H., Albuquerque E. X. Site of action of phencyclidine. IV. Interaction of phencyclidine and its analogues on ionic channels of the electrically excitable membrane and nicotinic receptor: implications for behavioral effects. Molecular Pharmacology 1982; 21: 637–647
  • Ary T. E., Komiskey H. L. Phencyclidine: effect on the accumulation of 'H-dopamine in synaptic vesicles. Life Sciences 1980; 26: 575–578
  • Ary T. E., Komiskey H. L. Phencyclidine-induced release of [3Hldopamine from chopped striatal tissue. Neuropharmacology 1982; 21: 639–645
  • Bannon M. J., Roth R. H. Pharmacology of mesocortical dopamine neurons. Pharmacological Reviews 1983; 35: 53–68
  • Benson C. G., Chase M. C., Potashner S. J. Decreased release of D-aspartate in the guinea pig spinal cord after lesions of the red nucleus. Journal of Neurochemistry 1991; 56: 1174–1183
  • Carlsson M., Carlsson A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine depleted mice. Journal of Neural Transmission 1989a; 75: 221–226
  • Carlsson M., Carlsson A. Dramatic Synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. Journal of Neural Transmission 1989b; 77: 65–71
  • Carlsson M., Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia - implications for schizophrenia and Parkinson disease. Trends in Neuroscience 1990; 13: 272–276
  • Clow D. W., Jhamandas K. Characterization of L-glutamate action on the release of endogenous dopamine from rat caudate-putamen. Journal of Pharmacology and Experimental Therapeutics 1989; 248: 722–728
  • Contreras P. C., Rice K. C., Jacobson A. E., O'Donohue T. L. Stereotyped behavior correlates better than ataxia with phencyclidine receptor interactions. European Journal of Pharmacology 1986; 121: 9–18
  • Deutsch A. Y., Tarn S.-Y., Freeman A. S., Bowers M. B., Jr., Roth R. H. Mesolimbic and mesocortical dopamine activation induced by phencyclidine: contrasting pattern to striatal response. European Journal of Pharmacology 1987; 134: 257–264
  • Deutsch S. J., Mastropaolo J., Schwartz B. L., Rosse R. B., Morihisa J. M. A 'glutamatergic hypothesis' of schizophrenia. Rationale for pharmacotherapy with glycine. Clinical Neuropharmacology 1989; 12: 1–13
  • Domino E. F., Luby E. D. Abnormal mental states induced by PCP as a model of schizophrenia. PCP (Phencyclidine); Historical and current perspectives, E. F. Domino. NPP Books, Ann Arbor 1981; 401–418
  • Drejer J., Larsson O. M., Schousboe A. Characterization of uptake and release processes for D- and L-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochemical Research 1983; 8: 231–243
  • Fagg G. E. Phencyclidine and related drugs bind to the activated N-methyl-D-aspartate receptor-channel complex in rat brain membranes. Neuroscience Letters 1987; 76: 221–227
  • Fauman M. A., Fauman B. J. Chronic phencyclidine (PCP) abuse: a psychiatric perspective. PCP (Phencyclidine); Historical and current perspectives, E. F. Domino. NPP Books, Ann Arbor 1981; 419–469
  • Flint B. A., Ho I. K. Tolerance development to phencyclidine by chronic administration. Progress in Neuropsychopharmacology 1980; 4: 233–239
  • Freeman A. S., Bunney B. S. The effects of phencyclidine and N-allyl-normetazocine on midbrain dopamine neuronal activity. European Journal of Pharmacology 1984; 104: 287
  • Harrison P. J., McLaughlin D., Kerwin R. W. Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 1991; 337: 450–452
  • Hassler R., Hang P., Nitsch C., Kim J. S., Poik K. Effect of motor and premotor cortex ablation on concentrations of amino-acids, monoamines and acetylcholine and on the ultrastructure in rat striatum. A confirmation of glutamate as the specific corticostriatal transmitter. Journal of Neurochemistry 1982; 38: 1087–1098
  • Javitt D. C., Jotkowitz A., Sircar R., Zukin S. R. Non-competitive regulation of phen-cyclidine/V-receptor by the N-methyl-D-aspartate receptor antagonist D-(-)-2-amino-5-phosphon-ovaleric acid. Neuroscience Letters 1987; 78: 193–198
  • Kesner R. P., Hardy J. D., Calder L. D. Phencyclidine and behavior: I. Sensory-motor function, activity level, taste aversion and water intake. Pharmacology, Biochemistry & Behavior 1981; 15: 7–13
  • Kontro P., Oja S. S. Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain. Developmental Brain Research 1987; 37: 277–291
  • Marwaha J. Candidate mechanisms underlying phencyclidine induced psychosis: an electrophysiological, behavioral and biochemical study. Biological Psychiatry 1982; 17: 155–198
  • Maycox P. R., Deckwerth T., Hell J. W., Jahn R. Glutamate uptake by brain synaptic vesicles. Journal of Biological Chemistry 1988; 263: 15423–15428
  • Meltzer H. Y., Sturgeon R. D., Simonovic M., Fessler R. G. Phencyclidine as an indirect dopamine agonist. PCP (Phencyclidine); Historical and current perspectives, E. F. Domino. NPP Books, Ann Arbor 1981; 207–239
  • Mitchell P. R., Dogett N. S. Modulation of striatal 3H-glutamic acid release by dopaminergic drugs. Life Sciences 1980; 26: 2073–2081
  • Monaghan G. T., Cotman C. W. Distribution of N-methyl-D-aspartate sensitive L-[3H]glutamate binding sites in rat brain. Journal of Neuroscience 1985; 11: 2909–2919
  • Monahan J. B., Contreras P. C., Lanthorn T. H., Dimaggis D. A., Handelmann G. E., Pullan L. M., Gray N. M., O'Donohue T. L. Phencyclidine receptor complex: interactions with excitatory amino acids and endogenous ligands. Schizophrenia: Scientific progress, S. C. Schulz, C. A. Tamminga. Oxford University Press, New York 1989; 155–162
  • Naito S., Ueda T. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. Journal of Biological Chemistry 1983; 258: 696–699
  • Naito S., Ueda T. Characterization of glutamate uptake into synaptic vesicles. Journal of Neurochemistry 1985; 44: 99–109
  • Nishikawa T., Hata N., Takahashi K. NMDA receptors mediate a tonic inhibitory control of dopaminergic transmission in rat medial frontal cortex. Psychopharmacology 1988; 96: 373
  • Reid A. A., Mattson M. V., de Costa B. R., Thurkauf A., Jacobson A. E., Monn J. A., Rice K. C., Rothman R. B. Specificity of phencyclidine-like drugs and benzomorphan opiates for two high-affinity phencyclidine binding sites in guinea pig brain. Neuropharmacology 1990; 29: 811–817
  • Saransaari P., Oja S. S. Release of D-aspartate from cerebral cortex slices from developing and adult mice. Molecular Neuropharmacology.
  • Sherman A. D., Davidson A. T., Baruch S., Hegwood T. S., Waziri R. Evidence of glutamatergic deficiency in schizophrenia. Neuroscience Letters 1991; 121: 77–80
  • Snedecor G. W. Statistical Methods(5th edn). Iowa State College Press, Ames 1956; 251–253
  • Tanii Y., Nishikawa T., Unimo A., Takahashi K. Phencyclidine increases extracellular dopamine metabolites in rat medial frontal cortex as measured by in vivo dialysis. Neuroscience Letters 1990; 112: 318–323
  • Ungerstedt U. Stereotaxic mapping of the monoamine pathway in rat brain. Acta Physiologica Scandinavica, Suppl. 1971; 367: 1–48
  • Wachtel H., Turski L. Glutamate: a new target in schizophrenia?. Trends in Pharmacological Sciences 1990; 11: 219–220
  • Wroblewski J. T., Nicoletti F., Fadda E., Costa E. Phencyclidine is a negative allosteric modulator of signal transduction at two subclasses of excitatory amino acid receptors. Proceedings of the National Academy of Sciences USA 1987; 84: 5068–5072

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.