32
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The senescence pathway in prostatic carcinogenesis

, , , &
Pages 507-511 | Received 02 Mar 2010, Accepted 09 May 2010, Published online: 20 Sep 2010

References

  • Haas GP, Sakr WA. Epidemiology of prostate cancer. CA Cancer J Clin 1997; 47: 273–287.
  • Guileyardo JM, Johnson WD, Welsh RA, et al Prevalence of latent prostate carcinoma in two U.S. populations. J Natl Cancer Inst 1980; 65: 311–316.
  • Untergasser G, Koch HB, Menssen A, et al Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Cancer Res 2002; 62: 6255–6262.
  • Isaacs SD, Kiemeney LA, Baffoe BA, et al Risk of cancer in relatives of prostate cancer probands. J Natl Cancer Inst 1995; 87: 991–996.
  • Gonzalgo ML, Isaacs WB. Molecular pathways to prostate cancer. J Urol 2003; 170: 2444–2452.
  • Torres K, Horwitz SB. Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 1998; 3620–3626.
  • Chang BD, Broude EV, Dokmanovic M, et al A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 1999; 59: 3761–3767.
  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25: 585–621.
  • Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002; 34: 1401–1414.
  • Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005; 120: 513–522.
  • Bavik C, Coleman I, Dean J, et al The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 2006; 66: 794–802.
  • Hayflick L. The limited in vitro life time of human diploid cell strains. Exp Cell Res 1965; 37: 614–636.
  • Allsopp RC, Vaziri H, Patterson C, et al Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–10118.
  • Herbig U, Jobling WA, Chen BP, et al Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 2004; 14: 501–513.
  • Braig M, Schmitt CA. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 2006; 66: 2881–2884.
  • Dimri GP, Lee X, Basile G, et al A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–9367.
  • Brenner AJ, Stampfer MR, Aldaz CM. Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 1998; 17: 199–205.
  • Stampfer MR, Garbe J, Levine G, et al Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A(−) human mammary epithelial cells. Proc Natl Acad Sci USA 2001; 98: 4498–4503.
  • Goldstein JC, Rodier F, Garbe JC, et al Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell 2005; 4: 217–222.
  • Li Y, Pan J, Li JL, et al Transcriptional changes associated with breast cancer occur as normal human mammary epithelial cells overcome senescence barriers and become immortalized. Mol Cancer 2007; 18: 6:7.
  • Shelton DN, Chang E, Whittier PS, et al Microarray analysis of replicative senescence. Curr Biol 1999; 9: 939–945.
  • Michaloglou C, Vredeveld LC, Soengas MS, et al BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.
  • Gruis NA, van der Velden PA, Sandkuijl LA, et al Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 1995; 10: 351–353.
  • Bennett DC, Medrano EE. Molecular regulation of melanocyte senescence. Pigment Cell Res 2002; 15: 242–250.
  • Collado M, Gil J, Efeyan A, et al Tumour biology: senescence in premalignant tumours. Nature 2005; 436: 642.
  • Zhao Y, Chaiswing L, Bakthavatchalu V, et al Ras mutation promotes p53 activation and apoptosis of skin keratinocytes. Carcinogenesis 2006; 27: 1692–1698.
  • Chen Z, Trotman LC, Shaffer D, et al Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.
  • Jones KR, Elmore LW, Jackson-Cook C, et al p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int J Radiat Biol 2005; 81: 445–458.
  • Crescenzi E, Palumbo G, Brady HJ. Bcl-2 activates a programme of premature senescence in human carcinoma cells. Biochem J 2003; 375: 263–274.
  • Zeng J, Wang L, Li Q, et al FoxM1 is up-regulated in gastric cancer and its inhibition leads to cellular senescence, partially dependent on p27 kip1. J Pathol 2009; 218: 419–427.
  • Takahashi A, Kato K, Kuboyama A, et al Induction of senescence by progesterone receptor-B activation in response to cAMP in ovarian cancer cells. Gynecol Oncol 2009; 113: 270–276.
  • Beausejour CM, Krtolica A, Galimi F, et al Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003; 22: 4212–4222.
  • Takahashi A, Ohtani N, Yamakoshi K, et al Mitogenic signaling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 2006; 8: 1291–1297.
  • Cosme-Blanco W, Shen MF, Lazar AJ, et al Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007; 8: 497–503.
  • Kawamoto H, Koizumi H, Uchikoshi T. Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. Am J Pathol 1997; 150: 15–23.
  • Ito Y, Yoshida H, Nakano K, et al Expression of G2-M modulators in thyroid neoplasms: correlation of cyclin A, B1 and cdc2 with differentiation. Pathol Res Pract 2002; 198: 397–402.
  • Kim JH, Kang MJ, Park CU, et al Amplified CDK2 and cdc2 activities in primary colorectal carcinoma. Cancer 1999; 85: 546–553.
  • Jin YH, Park CK. Expression of cyclin B1 and cdc2 in nodal non-Hodgkin's lymphoma and its prognostic implications. J Korean Med Sci 2002; 17: 322–327.
  • Banerjee SK, Weston AP, Zoubine MN, et al Expression of cdc2 and cyclin B1 in Helicobacter pylori-associated gastric MALT and MALT lymphoma: relationship to cell death, proliferation, and transformation. Am J Pathol 2000; 156: 217–225.
  • Wang Y, Zhu S, Cloughesy TF, et al p53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene 2004; 23: 1283–1290.
  • Roberson RS, Kussick SJ, Vallieres E, et al Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 2005; 65: 2795–2803.
  • Tounekti O, Pron G, Belehradek J, et al Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 1993; 53: 5462–5469.
  • Lock RB, Stribinskiene L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res 1996; 56: 4006–4012.
  • Torres K, Horwitz SB. Mechanisms of Taxol-induced cell death are concentration-dependent. Cancer Res 1998; 58: 3620–3626.
  • Chang BD, Xuan Y, Broude EV, et al Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 1999; 18: 4808–4818.
  • Modrak DE, Leon E, Goldenberg DM, et al Ceramide regulates gemcitabine-induced senescence and apoptosis in human pancreatic cancer cell lines. Mol Cancer Res 2009; 7: 890–896.
  • Sprenger CC, Drivdahl RH, Woodke LB, et al Senescence-induced alterations of laminin chain expression modulate tumorigenicity of prostate cancer cells. Neoplasia 2008; 10: 1350–1361.
  • Gabai VL, Yaglom JA, Waldman T, et al Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells. Mol Cell Biol 2009; 29: 559–569.
  • Henshall SM, Quinn DI, Lee CS, et al Overexpression of the cell cycle inhibitor p16INK4A in high grade prostatic intraepithelial neoplasia predicts early relapse in prostate cancer patients treated with radical prostatectomy. Clin Cancer Res 2001; 7: 544–550.
  • Braig M, Lee S, Loddenkemper C, et al Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436: 660–665.
  • Zhang Z, Rosen DG, Yao JL, et al Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression. Mod Pathol 2006; 19: 1339–1343.
  • Zhuang LQ, Lee CS, Scolyer RA, et al Progression in melanoma is associated with decreased expression of death receptors for tumor necrosis factor-related apoptosis-inducing ligand. Hum Pathol 2006; 37: 1286–1294.
  • Cooper WA, Kohonen-Corish MR, Zhuang L, et al Role and prognostic significance of tumor necrosis factor-related apoptosis-inducing ligand death receptor DR5 in nonsmall-cell lung cancer and precursor lesions. Cancer 2008; 113: 135–142.
  • Zheng X, Chou PM, Mirkin BL, Rebbaa A. Senescence-initiated reversal of drug resistance: Specific role of Cathepsin L. Cancer Res 2004; 64: 1773–1780.
  • Schwarze SR, Fu VX, Desotelle JA, et al The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 2005; 7: 816–823.
  • Chen Z, Trotman LC, Shaffer D, et al Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.
  • Petti C, Molla A, Vegetti C, et al Coexpression of NRASQ61R and BRAFV600E in human melanoma cells activates senescence and increases susceptibility to cell-mediated cytotoxicity. Cancer Res 2006; 66: 6503–6511.
  • Xue W, Zender L, Miething C, et al Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.
  • Ewald J, Desotelle J, Almassi N, et al Drug-induced senescence bystander proliferation in prostate cancer cells in vitro and in vivo. Br J Cancer 2008; 98: 1244–1249.
  • Sommerfeld HJ, Meeker AK, Piatyszek MA, et al Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res 1996; 56: 218–222.
  • Scates DK, Muir GH, Venitt S, et al Detection of telomerase activity in human prostate: a diagnostic marker for prostatic cancer? Br J Urol 1997; 80: 263–268.
  • Lin Y, Uemura H, Fujinami K, et al Telomerase activity in primary prostate cancer. J Urol 1997; 157: 1161–1165.
  • Incles CM, Schultes CM, Kempski H, et al A G-quadruplex telomere targeting agent produces p16-associated senescence and chromosomal fusions in human prostate cancer cells. Mol Cancer Ther 2004; 3: 1201–1206.
  • Sprenger C, Vail M, Evans K, et al Over-expression of insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1/mac25) in the M12 prostate cancer cell line alters tumor growth by a delay in G1 and cyclin A associated apoptosis. Oncogene 2002; 21: 140–147.
  • Uzgare AR, Xu Y, Isaacs JT. In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J Cell Biochem 2004; 91: 196–205.
  • Tang DG, Patrawala L, Calhoun T, et al Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 2007; 46: 1–14.
  • Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001; 1: 34–45.
  • Konishi N, Shimada K, Nakamura M, et al Function of JunB in transient amplifying cell senescence and progression of human prostate cancer. Clin Cancer Res 2008; 14: 4408–4416.
  • Sternberg PW, Schmid SL. Caveolin, cholesterol and Ras signalling. Nat Cell Biol 1999; 1: E35–E37.
  • Bennett N, Hooper JD, Lee CS, et al Androgen receptor and caveolin-1 in prostate cancer. IUBMB Life 2009; 61: 961–970.
  • Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol 2005; 288: C494–C506.
  • Li L, Yang G, Ebara S, Satoh T, et al Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 2001; 61: 4386–4392.
  • Yang G, Truong LD, Timme TL, et al Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 1998; 4: 1873–1880.
  • Tahir SA, Yang G, Ebara S, et al Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res 2001; 61: 3882–3885.
  • Ho CC, Huang PH, Huang HY, et al Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 2002; 161: 1647–1656.
  • Joo HJ, Oh DK, Kim YS, et al Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 2004; 93: 291–296.
  • Kato K, Hida Y, Miyamoto M, et al Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 2002; 94: 929–933.
  • Tahir SA, Ren C, Timme TL, et al Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 2003; 9: 3653–3659.
  • Tahir SA, Frolov A, Hayes TG, et al Preoperative serum caveolin-1 as a prognostic marker for recurrence in a radical prostatectomy cohort. Clin Cancer Res 2006; 12: 4872–4575.
  • Yang G, Truong LD, Wheeler TM, et al Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 1999; 59: 5719–5723.
  • Li L, Ren CH, Tahir SA, et al Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 2003; 23: 9389–9404.
  • Tahir SA, Yang G, Goltsov AA, et al Tumor cell-secreted caveolin-1 has proangiogenic activities in prostate cancer. Cancer Res 2008; 68: 731–739.
  • Di Vizio D, Morello M, Sotgia F, et al An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle 2009; 8: 2420–2424.
  • Dasari A, Bartholomew JN, Volonte D, et al Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res 2006; 66: 10805–10814.
  • Llorente A, de Marco MC, Alonso MA. Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. J Cell Sci 2004; 117: 5343–5351.
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49–53.
  • Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998; 1378: F115–F177.
  • Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000; 113: 3613–3622.
  • Hu X, Stern HM, Ge L, et al Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 2009; 7: 511–522.
  • LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003; 10: 66–75.
  • Yamada K, Miyamoto K. Basic helix-loop-helix transcription factors, BHLHB2 and BHLHB3; their gene expressions are regulated by multiple extracellular stimuli. Front Biosci 2005; 10: 3151–3171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.