10
Views
4
CrossRef citations to date
0
Altmetric
Original Article

An evaluation of twelve nested models of transperitoneal transport of urea: the one-compartment assumption is valid

, , , &
Pages 331-339 | Received 02 Sep 1994, Accepted 31 Jan 1995, Published online: 08 Jul 2009

References

  • Kallen R J. A method for approximating the efficacy of peritoneal dialysis for uremia. Amer J Dis Child 1966; 111: 156–60
  • Miller J H, Gipstein R, Margules R, Schwartz M, Rubin M E. Automated peritoneal dialysis: analysis of several methods of peritoneal dialysis. ASAIO Trans 1966; 12: 98–105
  • Henderson L W, Nolph K D. Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 1969; 48: 992–1001
  • Popovich R P, Okutan M, Moncrief J W, Decherd J F. A model of the peritoneal dialysis system. 25th Annual Conference on Engineering in Medicine and Biology 1972; 14: 172
  • Bomar J B, Decherd J F, Hlavinka D J, Moncrief J W, Popovich R P. The elucidation of maximum efficiency minimum cost peritoneal dialysis protocols. ASAIO Trans 1974; 20: 120–9
  • Goldsmidt Z H, Pote H H, Katz M A, Shear L. Effect of dialysate volume on peritoneal dialysis kinetics. Kidney Int 1974; 5: 240–5
  • Johansen P J. [Thesis]. University of Washington, Seattle 1973
  • Babb A L, Johansen A L, Strand M J, Tenckhoff H, Schribner B H. Bi-directional permeability of the human peritoneum to middle molecules. Proceedings of the 10th Congress of the European Dialysis and Transplant Association 1973; 10: 247–62
  • Bomar J B. The transport of uremic metabolites in peritoneal dialysis [thesis]. University of Texas, Austin 1975
  • Randerson D H, Farrell P C. Mass transfer properties of the human peritoneum. ASAIO J 1980; 3: 140–6
  • Pyle W K. Mass transfer in peritoneal dialysis [dissertation]. University of Texas. 1981
  • Garred L J, Canaud B, Farrell P C. A simple kinetic model for assessing peritoneal mass transfer in chronic ambulatory peritoneal dialysis. ASAIO J 1983; 6: 131–7
  • Krediet R T, Boeschoten E W, Zuyderhoudt FMJ, Strackee J, Arisz L. Simple assessment of the efficacy of peritoneal transport in continuous ambulatory peritoneal dialysis patients. Blood Purif 1986; 4: 194–203
  • Jaffrin M Y, Odell R A, Farrell P C. A model of ultrafiltration and glucose mass transfer kinetics in peritoneal dialysis. Artif Organs 1987; 11: 198–207
  • Lindholm B, Werynski A, Bergström J. Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. ASAIO Trans 1987; 33: 19–27
  • Flessner M F, Dedrick R L, Schultz J S. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 1984; 246: R597, -R607
  • Leypoldt J K, Pust A H, Frigon R P, Henderson L W. Dialysate volume measurements required for determining peritoneal solute transport. Kidney Int 1988; 34: 254–61
  • Hallett M D, Lysaght M J, Farrell P C. The role of the lymphatic drainage in peritoneal mass transfer. Artif Organs 1989; 13: 28–34
  • Rippe B, Stelin G. Simulation of peritoneal solute transport during CAPD. Application of a two-pore formalism. Kidney Int 1989; 35: 1234–44
  • Wolf A V, Remp D G, Kiley J E, Currie G D. Artificial kidney function: kinetics of hemodialysis. J Clin Invest 1951; 30: 1062–70
  • Sargent J A, Gotch F A. The analysis of concentration dependence of uremic lesions in clinical studies. Kidney Int 1975; 7: S35, -S44
  • Sargent J A, Gotch F A. Principles and biophysics of dialysis. Replacement of renal function by dialysis, W Drukker, F M Parsons, J F Maher. M Nijoff, Boston 1983; 53–96
  • Schindhelm K, Farrel P C. Patient-hemodialyzer interactions. ASAIO Trans 1978; 24: 357–65
  • Farrel P C. Kinetic modeling: application in renal and related diseases. Kidney Int 1983; 24: 487–95
  • Sprenger KBG, Kratz W, Lewis A, Stadtmuller U. Kinetic modeling of hemodialysis hemofiltration and hemodiafiltration. Kidney Int 1983; 24: 143–51
  • Haas T, Dongradi G, Villeboeuf F, De Viel E, Fournier J F, Duruy D. Plasma kinetics of small molecules during and after hemofiltration: decrease in HF efficiency related to increase in ultrafiltration rate. Clin Nephrol 1983; 19: 193–200
  • Lowrie E, Sargent J A. Clinical examples of pharmacokinetics and metabolic modeling: quantitative and individualized prescription of dialysis therapy. Kidney Int 1980; 18: S11, -S16
  • Carson E R, Cobelli C, Finkelstein L. The Mathematical Modelling of Metabolic and Endocrine Systems. John Wiley, New York 1983
  • Fugleberg S, Graff J, Joffe P, Løkkegaard H, Feldt-Rasmussen B, Fogh-Andersen N. Transperitoneal transport of creatinine. A comparison of kinetic models. Clin Physiol 1994; 14: 443–57
  • Graff J, Fugleberg S, Joffe P, Fogh-Andersen N. Parameter estimation in six numeric models of transperitoneal transport of glucose. ASAIO J 1994; 40: 1005–11
  • Brouard R, Tozer T N, Baumelou A, Gambertoglio J G. Transfer of autologous hemoglobin from the peritoneal cavity during peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 57–62
  • Canaud B, Liendo-Liendo C, Claret G, Mion H, Mion C. Etudes “in situ” de la cinétique de l'ultrafiltration en cours de dialyse péritonéal avec périodes de diffusion prolongée. Nephrologie 1980; 1: 126–32
  • Ladenson J H, Tsai LMB, Michael J M, Kessler G, Joist J H. Serum versus heparinized plasma for eighteen common chemistry tests. Is serum the appropriate specimen. Am J Clin Pathol 1974; 62: 545–52
  • Shockley T R, Ofsthun N J. Pathways for fluid loss from the peritoneal cavity. Blood Purif 1992; 10: 115–21
  • Villaroel F, Klein E, Holland F. Solute flux in hemodialysis and hemofiltration membranes. ASAIO Trans 1977; 28: 225–32
  • Nelder J, Mead R. A simplex method for function minimization. Comput J 1965; 7: 308–13
  • Akaike H. A new look at statistical model identification. IEEE Trans Automat Contr 1974; AC-19: 716–23
  • Draper N R, Smith H. Applied regression analysis. John Wiley, New York 1981
  • Bates D M, Watts D G. Nonlinear regression analysis and its applications. John Wiley, New York 1988
  • Lindholm B, Werynski A, Bergström J. Peritoneal dialysis with Amino Acid Solutions: Fluid and solute transport kinetics. Artif Organs 1988; 12: 2–10
  • Waniewski J, Werynski A, Heimbürger O, Lindholm B. A comparative analysis of mass transfer models in peritoneal dialysis. ASAIO Trans 1991; 37: 65–75
  • Krediet R T, Boeschoten E W, Struijk D G, Arisz L. Differences in the peritoneal transport of water solutes and proteins between dialysis with two- and three-litre exchanges. Nephrol Dial Transplant 1988; 2: 198–204
  • Krediet R K, Arisz L. Fluid and solute transport across the peritoneum during continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 1989; 9: 15–25
  • Struijk D G, Krediet R K, Koomen GCM, Hoek F J, Boeschoten E W, Reijden H J. Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 1991; 59: 213–20
  • Vonesh E F, Lysaght M J, Moran J, Farrell P. Kinetic modeling as a prescription aid in peritoneal dialysis. Blood Purif 1991; 9: 246–70
  • Waniewski J, Heimbürger O, Werynski A, Lindholm B. Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 50–6
  • Mactier R A, Khanna R. Peritoneal lymphatics. The Textbook of Peritoneal Dialysis, R Gokal, K D Nolph. Kluwer Academic, Dordrecht 1994; 115–34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.