Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 42, 2012 - Issue 11
225
Views
18
CrossRef citations to date
0
Altmetric
Animal Pharmacokinetics and Metabolism

Saturable sinusoidal uptake is rate-determining process in hepatic elimination of docetaxel in rats

, , , , , , , , & show all
Pages 1110-1119 | Received 31 Mar 2012, Accepted 31 May 2012, Published online: 02 Jul 2012

References

  • Aapro M, Bruno R. (1995). Docetaxel Investigators Group. Early clinical studies with docetaxel. Eur J Cancer, 4, S7–10.
  • Back DJ, Cross KJ, Hiley CR, Yates MS. (1979). The effect of rifampicin on liver blood flow, microsomal enzyme activity and bile flow in the rat. Biochem Pharmacol 28:1293–1296.
  • Choi YH, Suh JH, Lee JH, Cho IH, Lee MG. (2010). Effects of tesmilifene, a substrate of CYP3A and an inhibitor of P-glycoprotein, on the pharmacokinetics of intravenous and oral docetaxel in rats. J Pharm Pharmacol 62:1084–1088.
  • Clarke SJ, Rivory LP. (1999). Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36:99–114.
  • Eckhardt U, Schroeder A, Stieger B, Höchli M, Landmann L, Tynes R, Meier PJ, Hagenbuch B. (1999). Polyspecific substrate uptake by the hepatic organic anion transporter Oatp1 in stably transfected CHO cells. Am J Physiol 276:G1037–G1042.
  • Faber KN, Müller M, Jansen PL. (2003). Drug transport proteins in the liver. Adv Drug Deliv Rev 55:107–124.
  • Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, Eichelbaum M, Siegmund W, Schrenk D. (2000). The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol 157:1575–1580.
  • Han YH, Chung SJ, Shim CK. (1999). Canalicular membrane transport is primarily responsible for the difference in hepatobiliary excretion of triethylmethylammonium and tributylmethylammonium in rats. Drug Metab Dispos 27:872–879.
  • Hirano M, Maeda K, Shitara Y, Sugiyama Y. (2004). Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 311:139–146.
  • Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, Ishizaki T, Green CE, Tyson CA, Sugiyama Y. (1997). Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 73:147–171.
  • Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT. (2005). Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol 97:249–256.
  • Kiyotani K, Mushiroda T, Kubo M, Zembutsu H, Sugiyama Y, Nakamura Y. (2008). Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci 99:967–972.
  • König J, Cui Y, Nies AT, Keppler D. (2000). A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 278:G156–G164.
  • Lam JL, Benet LZ. (2004). Hepatic microsome studies are insufficient to characterize in vivo hepatic metabolic clearance and metabolic drug-drug interactions: studies of digoxin metabolism in primary rat hepatocytes versus microsomes. Drug Metab Dispos 32:1311–1316.
  • Lam JL, Okochi H, Huang Y, Benet LZ. (2006). In vitro and in vivo correlation of hepatic transporter effects on erythromycin metabolism: characterizing the importance of transporter-enzyme interplay. Drug Metab Dispos 34:1336–1344.
  • Lau YY, Wu CY, Okochi H, Benet LZ. (2004). Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J Pharmacol Exp Ther 308:1040–1045.
  • Lau YY, Okochi H, Huang Y, Benet LZ. (2006a). Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther 316:762–771.
  • Lau YY, Okochi H, Huang Y, Benet LZ. (2006b). Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metab Dispos 34:1175–1181.
  • Liu L, Pang KS. (2006). An integrated approach to model hepatic drug clearance. Eur J Pharm Sci 29:215–230.
  • Marre F, Sanderink GJ, de Sousa G, Gaillard C, Martinet M, Rahmani R. (1996). Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 56:1296–1302.
  • Miyauchi S, Sugiyama Y, Sawada Y, Morita K, Iga T, Hanano M. (1987). Kinetics of hepatic transport of 4-methylumbelliferone in rats. Analysis by multiple indicator dilution method. J Pharmacokinet Biopharm 15:25–38.
  • Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y. (2001). Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 29:1316–1324.
  • Paine SW, Parker AJ, Gardiner P, Webborn PJ, Riley RJ. (2008). Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab Dispos 36:1365–1374.
  • Roberts MS, Rowland M. (1986). A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations. J Pharmacokinet Biopharm 14:227–260.
  • Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, Borst P. (1997). Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 94:4028–4033.
  • Schuetz EG, Schinkel AH, Relling MV, Schuetz JD. (1996). P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci USA 93:4001–4005.
  • Shitara Y, Nagamatsu Y, Wada S, Sugiyama Y, Horie T. (2009). Long-lasting inhibition of the transporter-mediated hepatic uptake of sulfobromophthalein by cyclosporin a in rats. Drug Metab Dispos 37:1172–1178.
  • Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. (2005). Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther 4:815–818.
  • Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. (1998). Preclinical pharmacokinetics of paclitaxel and docetaxel. Anticancer Drugs 9:1–17.
  • Tanino T, Nawa A, Nakao M, Noda M, Fujiwara S, Iwaki M. (2009). Organic anion transporting polypeptide 2-mediated uptake of paclitaxel and 2′-ethylcarbonate-linked paclitaxel in freshly isolated rat hepatocytes. J Pharm Pharmacol 61:1029–1035.
  • van de Steeg E, van Esch A, Wagenaar E, van der Kruijssen CM, van Tellingen O, Kenworthy KE, Schinkel AH. (2011). High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel. Clin Cancer Res, 17, 294–301.
  • van Waterschoot RA, Lagas JS, Wagenaar E, van der Kruijssen CM, van Herwaarden AE, Song JY, Rooswinkel RW, van Tellingen O, Rosing H, Beijnen JH, Schinkel AH. (2009). Absence of both cytochrome P450 3A and P-glycoprotein dramatically increases docetaxel oral bioavailability and risk of intestinal toxicity. Cancer Res 69:8996–9002.
  • Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y. (2010). Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38:215–222.
  • Weiss M, Hung DY, Poenicke K, Roberts MS. (2008). Kinetic analysis of saturable hepatic uptake of digoxin and its inhibition by rifampicin. Eur J Pharm Sci 34:345–350.
  • Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. (2006). Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos 34:1247–1254.
  • Yamazaki M, Suzuki H, Sugiyama Y. (1996). Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res 13:497–513.
  • Yoon IS, Choi MK, Kim JS, Shim CK, Chung SJ, Kim DD. (2011). Pharmacokinetics and first-pass elimination of metoprolol in rats: contribution of intestinal first-pass extraction to low bioavailability of metoprolol. Xenobiotica 41:243–251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.