288
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Cadmium inhibits the differentiation of 3T3-L1 preadipocyte through the C/EBPα and PPARγ pathways

, &
Pages 225-231 | Received 01 Feb 2011, Accepted 15 Apr 2011, Published online: 18 Aug 2011

References

  • Bell, R. R., Early, J. L., Nonavinakere, V. K., Mallory, Z. (1990). Effect of cadmium on blood glucosen level in the rat. Toxicol Lett 54:199–205.
  • Bernlohr, D. A., Bolanowski, M. A., Kelly, T. J., Jr., Lane, M. D. (1985). Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J Biol Chem 260:5563–5567.
  • Biagioli, M., Pifferi, S., Ragghianti, M., Bucci, S., Rizzuto, R., Pinton, P. (2008). Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43:184–195.
  • Black, M. A., Bégin-Heick, N. (1995). Growth and maturation of primary-cultured adipocytes from lean and ob/ob mice. J Cell Biochem 58:455–463.
  • Edwards, J. R., Prozialeck, W. C. (2009). Cadmium, diabetes, and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293.
  • Evans, M., Geigerman, C., Cook, J., Curtis, L., Kuebler, B., McIntosh, M. (2000). Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids 35:899–910.
  • Ficková, M., Eybl, V., Kotyzová, D., Micková, V., Möstbök, S., Brtko, J. (2003). Long lasting cadmium intake is associated with reduction of insulin receptors in rat adipocytes. Biometals 16:561–566.
  • Green, H., Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell 5:19–27.
  • Gregoire, F. M., Smas, C. M., Sul, H. S. (1998). Understanding adipocyte differentiation. Physiol Rev 78:783–809.
  • Han, J. C., Park, S. Y., Hah, B. G., Choi, G. H., Kim, Y. K., Kwon, T. H., et al. (2003). Cadmium induces impaired glucose tolerance in rat by down-regulating GLUT4 expression in adipocytes. Arch Biochem Biophys 413:213–220.
  • Harrison, S. A., Buxton, J. M., Clancy, B. M., Czech, M. P. (1991). Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem 266:19438–19449.
  • Hata, K., Hiwatashi, K., Itoh, M., Suzuki, N., Watanabe, T., Takahashi, J., et al. (2008). Inhibitory effects of lupeol on 3T3-L1 preadipocyte differentiation. Phytochem Lett 1:191–194.
  • IARC, (1993). Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Working Group views and expert opinions, Lyon, 9–16 February 1993. IARC Monogr Eval Carcinog Risks Hum 58:1–415.
  • Jin, T., Nordberg, G., Sehlin, J., Wallin, H., Sanberg, S. (1999). The susceptibility to nephrotoxicity of streptozotocin-induced diabetic rats subchronically exposed to cadmium chloride in drinking water. Toxicology 142:69–75.
  • Joseph, P., Muchnok, T. K., Klishis, M. L., Roberts, J. R., Antonini, J. M., Whong, W. Z., et al. (2001). Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci 61:295–303.
  • Joseph, P., Lei, Y. X., Ong, T. M. (2004). Up-regulation of expression of translation factors—a novel molecular mechanism for cadmium carcinogenesis. Mol Cell Biochem 255:93–101.
  • Kawakami, T., Sugimoto, H., Furuichi, R., Kadota, Y., Inoue, M., Setsu, K., et al. (2010). Cadmium reduces adipocyte size and expression levels of adiponectin and Peg1/Mest in adipose tissue. Toxicology 267:20–26.
  • Kim, S. H., Park, H. S., Lee, M. S., Cho, Y. J., Kim, Y. S., Hwang, J. T., et al. (2008). Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells. Biochem Biophys Res Comm 372:108–113.
  • Lei, L. J., Jin, T. Y., Zhou, Y. F. (2007). Insulin expression in rats exposed to cadmium. Biomed Environ Sci 20:295–301.
  • Levy, J. R., Gyarmati, J., Lesko, J. M., Adler, R. A., Stevens, W. (2000). Dual regulation of leptin secretion: intracellular energy and calcium dependence of regulated pathway. Am J Physiol Endocrinol Metab 278:892–901.
  • Liu, J., Qu, W., Saavedra, J. E., Waalkes, M. P. (2004). The nitric oxide donor, O2-vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/NO), protects against cadmium-induced hepatotoxicity in mice. J Pharmacol Exp Ther 310:18–24.
  • MacDougald, O. A., Lane, M. D. (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 64:345–373.
  • Maeda, H., Hosokawa, M., Sashima, T., Takahashi, N., Kawada, T., Miyashita, K. (2006). Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int J Mol Med 18:147–152.
  • Moreno-Aliaga, M. J., Matsumura, F. (2002). Effects of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (p,p’-DDT) on 3T3-L1 and 3T3-F442A adipocyte differentiation. Biochem Pharmacol 63:997–1007.
  • Nordberg, G. F. (2009). Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200.
  • Park, H. J., Della-Fera, M. A., Hausman, D. B., Rayalam, S., Ambati, S., Baile, C. A. (2009). Genistein inhibits differentiation of primary human adipocytes. J Nutr Biochem 20:140–148.
  • Phillips, M. A., Enan, E., Liu, P. C. C., Matsumura, F. (1995). Inhibition of 3T3-L1 adipose differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Cell Sci 108:395–402.
  • Rosen, E. D., Spiegelman, B. M. (2001). PPAR gamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276:37731–37734.
  • Rosen, E. D., Walkey, C. J., Puigserver, P., Spiegelman, B. M. (2000). Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307.
  • Schoonjans, K., Martin, G., Staels, B., Auwerx, J. (1997). Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 8:159–166.
  • Shih, C. M., Ko, W. C., Wu, J. S., Wei, Y. H., Wang, L. F., Chang, E. E., et al. (2004). Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91:384–397.
  • Srisook, K., Jung, N. H., Kim, B. R., Cha, S. H., Kim, H. S., Cha, Y. N. (2005). Heme oxygenase-1-mediated partial cytoprotective effect by NO on cadmium-induced cytotoxicity in C6 rat glioma cells. Toxicol In Vitro 19:31–39.
  • Takahashi, N., Kawada, T., Yamamoto, T., Goto, T., Taimatsu, A., Aoki, N., et al. (2002). Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator activated receptor gamma. J Biol Chem 277:16906–16912.
  • Thévenod, F. (2009). Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239.
  • Tontonoz, P., Hu, E., Spiegelman, B. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156.
  • Waisberg, M., Joseph, P., Hale, B., Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117.
  • Ward, D. T. (2004). Calcium receptor-mediated intracellular signalling. Cell Calcium 35:217–228.
  • Wise, L. S., Green, H. (1979). Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J Biol Chem 254:273–275.
  • Xie, J., Shaikh, Z. A. (2006). Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci 91:299–308.
  • Xiong, Z. D., Li, P. G., Mu, T. H. (2009). The differentiation- and proliferation-inhibitory effects of sporamin from sweet potato in 3T3-L1 preadipocytes. Agri Sci in China 8:671–677.
  • Yuan, T., Gomes, A. V., Barnes, J. A., Hunter, H. N., Vogel, H. J. (2004). Spectroscopic characterization of the calmodulin-binding and autoinhibitory domains of calcium/calmodulin-dependent protein kinase I. Arch Biochem Biophys 421:192–206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.