390
Views
34
CrossRef citations to date
0
Altmetric
Research Article

In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types

, , &
Pages 152-161 | Received 13 Nov 2013, Accepted 11 Apr 2014, Published online: 04 Jun 2014

References

  • Ahamed M, Siddiqui MA, Akhtar MJ, et al. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583
  • Alarifi S, Ali D, Verma A, et al. (2013). Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 32:296–307
  • Allaker RP, Ren G. (2008). Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg 102:1–2
  • Ames BN, McCann J, Yamasaki E. (1975). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364
  • Baek Y-W, An Y-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608
  • Balasubramanyam A, Sailaja N, Mahboob M, et al. (2010). In vitro mutagenicity assessment of aluminium oxide nanomaterials using the Salmonella/microsome assay. Toxicol In Vitro 24:1871–1876
  • Chatterjee S, Bandyopadhyay A, Sarkar K. (2011). Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology 9:34–40
  • Cho J, Joshi MS, Sun CT. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos Sci Technol 66:1941–1952
  • Choi JY, Lee SH, Na HB, et al. (2010). In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng 33:21–30
  • Choi O, Hu Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588
  • Collins AR, Ma AG, Duthie SJ. (1995). The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336:69–77
  • Di Bucchianico S, Fabbrizi MR, Misra SK, et al. (2013). Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 28:287–299
  • Di Virgilio AL, Reigosa M, Arnal PM, Fernandez Lorenzo de Mele M. (2010). Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater 177:711–718
  • Emami-Karvani Z, Chehrazi P. (2011). Antimicrobial activity of ZnO nanoparticles against gram-positive and gram-negative bacteria. Afr J Microbiol Res 5:1368–1373
  • Fenech M. (2000). The in vitro micronucleus technique. Mutat Res 455:81–95
  • Guichard Y, Schmit J, Darne C, et al. (2012). Cytotoxicity and Genotoxicity of Nanosized and Microsized Titanium Dioxide and Iron Oxide Particles in Syrian Hamster Embryo Cells. Ann Occup Hyg 56:631–644
  • Henderson L, Wolfreys A, Fedyk J, et al. (1998). The ability of the Comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis 13:89–94
  • Ivask A, Bondarenko O, Jepihhina N, Kahru A. (2010). Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716
  • Jodin L, Dupuis AC, Rouviere E, Reiss P. (2006). Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. J Phys Chem B 110:7328–7333
  • Jose GP, Santra S, Mandal SK, Sengupta TK. (2011). Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9:9–16
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. (2008). Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732
  • Karlsson HL, Gustafsson J, Cronholm P, Moller L. (2009). Size-dependent toxicity of metal oxide particles a comparison between nano- and micrometer size. Toxicol Lett 188:112–118
  • Kirsch-Volders M, Sofuni T, Aardema M, et al. (2000). Report from the in vitro micronucleus assay working group. Environ Mol Mutagen 35:167–172
  • Konczol M, Ebeling S, Goldenberg E, et al. (2011). Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-kappaB. Chem Res Toxicol l24:1460–1475
  • Kroll A, Dierker C, Rommel C, et al. (2011). Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9–28
  • Landsiedel R, Ma-Hock L, Van Ravenzwaay B, et al. (2010). Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4:364–381
  • Lei R, Wu C, Yang B, et al. (2008). Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301
  • Li H, Li Y, Jiao J, Hu HM. (2011). Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 6:645–650
  • Lin W, Stayton I, Huang YW, et al. (2008). Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicol Environ Chem 90:983–996
  • Liu G, Li X, Qin B, et al. (2004). Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17:961–966
  • Liu X, Luo L, Ding Y, Xu Y. (2011). Amperometric biosensors based on alumina nanoparticles-chitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds. Analyst 136:696–701
  • Maron DM., Ames BN. (1983). Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215
  • Midander K, Cronholm P, Karlsson HL, et al. (2009). Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-discipinary study. Small 5:389–399
  • Mody VV, Siwale R, Singh A, Mody HR. (2010). Introduction to metallic nanoparticles. J Pharm Bioall Sci, 2:282–289
  • Mohapatra M, Anand S. (2010). Synthesis and applications of nano-structured iron oxides/hydroxides – a review. Int J Eng Sci 2:127–146
  • Murdock RC, Braydich-Stolle L, Schrand AM, et al. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253
  • Nel A, Xia T, Madler L, Li N. (2006). Toxic potential of materials at the nanolevel. Science 311:622–627
  • Oberdorster G, Oberdorster E, Oberdorster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839
  • Osman IF, Baumgartner A, Cemeli E, et al. (2010). Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine (Lond) 5:193–1203
  • Pacheco S, Medina M, Valencia F, Tapia J. (2006). Removal of Inorganic Mercury from Polluted Water Using Structured Nanoparticles. J Environ Eng 132:342–349
  • Pan X, Redding JE, Wiley PA, et al. (2010). Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79:113–116
  • Phillips HJ. (1973). Dye exclusion tests for cell viability. In: Kruse PF, Patterson MK, eds. Tissue culture: methods and applications. New York: Academic Press, 406–408
  • Popat KC, Mor G, Grimes CA, Desai TA. (2004). Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir 20:8035–8041
  • Pujalte I, Passagne I, Brouillaud B, et al. (2011). Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10. doi: 10.1186/1743-8977-8-10
  • Radziun E, Dudkiewicz Wilczynska J, Ksiazek I, et al. (2011). Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol In Vitro 25:1694–1700
  • Roco MC. (2005). Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112A
  • Seaton A, Tran L, Aitken R, Donaldson K. (2010). Nanoparticles, human health hazard and regulation. J R Soc Interface 7:S119–S129
  • Sheline CT, Choi DW. (2004). Cu2+ toxicity inhibition of mitochondrial dehydrogenases in vitro and in vivo. Ann Neurol 55:645–653
  • Singh N, Manshian B, Jenkins GJ, et al. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914
  • Singh NP, McCoy MT, Tice RR, Schneider EL. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191
  • Smith CC, O’Donovan MR, Martin EA. (2006). hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21:185–190
  • Stern ST, McNeil SE. (2008). Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21
  • Sun J, Wang S, Zhao D, et al. (2011). Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol Toxicol 27:333–342
  • Surralles J, Xamena N, Creus A, et al. (1995). Induction of micronuclei by five pyrethroid insecticides in whole-blood and isolated human lymphocyte cultures. Mutat Res 341:169–184
  • Szalay B, Tatrai E, Nyiro G, et al. (2012). Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol 32:446–453
  • Tarasov S, Kolubaev A, Belyaev S, et al. (2002). Study of friction reduction by nanocopper additives to motor oil. Wear 252:63–69
  • Tran N, Pareta RA, Taylor E, Webster TJ. (2010). Iron oxide nanoparticles: novel drug delivery materials for treating bone diseases. Adv Mater Res 89–91:411–418
  • Tsaousi A, Jones E, Case, CP. (2010). The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res 697:1–9
  • Valko M, Morris H, Cronin MT. (2005). Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208
  • Wagner AJ, Bleckmann CA, Murdock RC, et al. (2007). Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. J Phys Chem B 111:7353–7359
  • Warheit DB, Webb TR, Reed KL, et al. (2007). Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicolog 230:90–104
  • Woodruff RS, Li Y, Yan J, et al. (2012). Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol 32:934–943
  • Yamamoto A, Honma R, Sumita M, Hanawa T. (2004). Cytotoxicity evaluation of ceramic particles of different sizes and shape. J Biomed Mater Res Part A 68:244–256
  • Yang J, Okamoto T, Ichino R, et al. (2006). A simple way for preparing antioxidation nano-copper powders. Chem Lett 35:648–649
  • Yin H, Casey PS, McCall MJ, Fenech M. (2010). Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26:15399–15408
  • Yoon K-Y, Hoon Byeon J, Park J-H, Hwang J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.