2,471
Views
207
CrossRef citations to date
0
Altmetric
Rapid Communication

Promotion of Sleep by Suvorexant—A Novel Dual Orexin Receptor Antagonist

, , , , , , , , , , , , & show all
Pages 52-61 | Received 01 Feb 2011, Accepted 24 Feb 2011, Published online: 08 Apr 2011

REFERENCES

  • Akanmu, M. A., Honda, K. (2005). Selective stimulation of orexin receptor type 2 promotes wakefulness in freely behaving rats. Brain Res, 1048, 138–145.
  • Aston-Jones, G., Smith, R. J., Moorman, D. E., Richardson, K. A. (2009). Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 56(Suppl 1), 112–121.
  • Benca, R. M. (2005). Diagnosis and treatment of chronic insomnia: A review. Psychiatr Serv, 56, 332–343.
  • Beuckmann, C. T., Sinton, C. M., Williams, S. C., Richardson, J. A., Hammer, R. E., Sakurai, T., . (2004). Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J Neurosci, 24, 4469–4477.
  • Beuckmann, C. T., Yanagisawa, M. (2002). Orexins: From neuropeptides to energy homeostasis and sleep/wake regulation. J Mol Med, 80, 329–342.
  • Bonnavion, P., de Lecea, L. (2010). Hypocretins in the control of sleep and wakefulness. Curr Neurol Neurosci Rep, 10, 174–179.
  • Borgland, S. L., Taha, S. A., Sarti, F., Fields, H. L., Bonci, A. (2006). Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron, 49, 589–601.
  • Brisbare-Roch, C., Dingemanse, J., Koberstein, R., Hoever, P., Aissaoui, H., Flores, S., . (2007). Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med, 13, 150–155.
  • Chemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J. K., Scammell, T., Lee, C., . (1999). Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell, 98, 437–451.
  • Coleman, P. J., Schreier, J. D., McGaughey, G. B., Bogusky, M. J., Cox, C. D., Hartman, G. D., . (2010). Design and synthesis of conformationally constrained N,N-disubstituted 1,4-diazepanes as potent orexin receptor antagonists. Bioorg. Med Chem Lett, 20, 2311–2315.
  • Cox, C. D., Breslin, M. J., Whitman, D. B., Schreier, J. D., McGaughey, G. B., Bogusky, M. J., . (2010). Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1, 3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methy l-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J Med Chem, 53, 5320–5332.
  • de Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., . (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A, 95, 322–327.
  • Deadwyler, S. A., Porrino, L., Siegel, J. M., Hampson, R. E. (2007). Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci, 27, 14239–14247.
  • Diniz Behn, C. G., Klerman, E. B., Mochizuki, T., Lin, S. C., Scammell, T. E. (2010). Abnormal sleep/wake dynamics in orexin knockout mice. Sleep, 33, 297–306.
  • Dugovic, C., Shelton, J. E., Aluisio, L. E., Fraser, I. C., Jiang, X., Sutton, S. W., . (2009). Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther, 330, 142–151.
  • Estabrooke, I. V., McCarthy, M. T., Ko, E., Chou, T. C., Chemelli, R. M., Yanagisawa, M., . (2001). Fos expression in orexin neurons varies with behavioral state. J Neurosci, 21, 1656–1662.
  • Foley, D. J., Monjan, A. A., Brown, S. L., Simonsick, E. M., Wallace, R. B., Blazer, D. G. (1995). Sleep complaints among elderly persons: An epidemiologic study of three communities. Sleep, 18, 425–432.
  • Fujiki, N., Morris, L., Mignot, E., Nishino, S. (2002). Analysis of onset location, laterality and propagation of cataplexy in canine narcolepsy. Psychiatry Clin Neurosci, 56, 275–276.
  • Fujiki, N., Yoshida, Y., Ripley, B., Honda, K., Mignot, E., Nishino, S. (2001). Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport, 12, 993–997.
  • Fujiki, N., Yoshida, Y., Ripley, B., Mignot, E., Nishino, S. (2003). Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. Sleep, 26, 953–959.
  • Gautvik, K. M., de Lecea, L., Gautvik, V. T., Danielson, P. E., Tranque, P., Dopazo, A., . (1996). Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc Natl Acad Sci U S A, 93, 8733–8738.
  • Grady, S. P., Nishino, S., Czeisler, C. A., Hepner, D., Scammell, T. E. (2006). Diurnal variation in CSF orexin-A in healthy male subjects. Sleep, 29, 295–297.
  • Hagan, J. J., Leslie, R. A., Patel, S., Evans, M. L., Wattam, T. A., Holmes, S., . (1999). Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A, 96, 10911–10916.
  • Hara, J., Beuckmann, C. T., Nambu, T., Willie, J. T., Chemelli, R. M., Sinton, C. M., . (2001). Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron, 30, 345–354.
  • Huang, Z. L., Qu, W. M., Li, W. D., Mochizuki, T., Eguchi, N., Watanabe, T., . (2001). Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A, 98, 9965–9970.
  • Kamel, N. S., Gammack, J. K. (2006). Insomnia in the elderly: Cause, approach, and treatment. Am J Med, 119, 463–469.
  • Kunapuli, P., Ransom, R., Murphy, K. L., Pettibone, D., Kerby, J., Grimwood, S., . (2003). Development of an intact cell reporter gene beta-lactamase assay for G protein-coupled receptors for high-throughput screening. Anal Biochem, 314, 16–29.
  • Lee, M. G., Hassani, O. K., Jones, B. E. (2005). Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci, 25, 6716–6720.
  • Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., . (1999). The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 98, 365–376.
  • Manabe, K., Matsui, T., Yamaya, M., Sato-Nakagawa, T., Okamura, N., Arai, H., . (2000). Sleep patterns and mortality among elderly patients in a geriatric hospital. Gerontology, 46, 318–322.
  • Marcus, J. N., Aschkenasi, C. J., Lee, C. E., Chemelli, R. M., Saper, C. B., Yanagisawa, M., . (2001). Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol, 435, 6–25.
  • Mileykovskiy, B. Y., Kiyashchenko, L. I., Siegel, J. M. (2005). Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron, 46, 787–798.
  • Mochizuki, T., Crocker, A., McCormack, S., Yanagisawa, M., Sakurai, T., Scammell, T. E. (2004). Behavioral state instability in orexin knock-out mice. J Neurosci, 24, 6291–6300.
  • Moorman, D. E., Aston-Jones, G. (2009). Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol–preferring Sprague–Dawley rats. Alcohol, 43, 379–386.
  • Mosser, S. D., Stanley, L., Gaul, S. L., Bednar, B., Koblan, K. S., Bednar, R. A. (2003). Automation of in vitro dose-inhibition assays using the Tecan Genesis and an integrated software package to support the drug discovery process. J Assoc Lab Autom, 8, 54–62.
  • Peyron, C., Faraco, J., Rogers, W., Ripley, B., Overeem, S., Charnay, Y., . (2000). A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med, 6, 991–997.
  • Pinheiro, J. C., Bates, D. M. (2002). Mixed-effects models in S and S-PLUS. Springer, New York, USA.
  • Piper, D. C., Upton, N., Smith, M. I., Hunter, A. J. (2000). The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats. Eur J Neurosci, 12, 726–730.
  • Renger, J. J., Dunn, S. L., Motzel, S. L., Johnson, C., Koblan, K. S. (2004). Sub-chronic administration of zolpidem affects modifications to rat sleep architecture. Brain Res, 1010, 45–54.
  • Roth, T. (2001). New developments for treating sleep disorders. J Clin Psychiatry, 62(Suppl 10), 3–4.
  • Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., . (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 92, 573–585.
  • Sakurai, T., Mieda, M., Tsujino, N. (2010). The orexin system: Roles in sleep/wake regulation. Ann N Y Acad Sci, 1200, 149–161.
  • Whitman, D. B., Cox, C. D., Breslin, M. J., Brashear, K. M., Schreier, J. D., Bogusky, M. J., . (2009). Discovery of a potent, CNS-penetrant orexin receptor antagonist based on an n,n-disubstituted-1,4-diazepane scaffold that promotes sleep in rats. ChemMedChem, 4, 1069–1074.
  • Willie, J. T., Chemelli, R. M., Sinton, C. M., Tokita, S., Williams, S. C., Kisanuki, Y. Y., . (2003). Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: Molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron, 38, 715–730.
  • Willie, J. T., Chemelli, R. M., Sinton, C. M., Yanagisawa, M. (2001). To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci, 24, 429–458.
  • Winrow, C. J., Tanis, K. Q., Reiss, D. R., Rigby, A. M., Uslaner, J. M., Uebele, V. N., . (2010). Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure. Neuropharmacology, 58, 185–194.
  • Yamanaka, A., Tsujino, N., Funahashi, H., Honda, K., Guan, J. L., Wang, Q. P., . (2002). Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun, 290, 1237–1245.
  • Yoshida, Y., Fujiki, N., Nakajima, T., Ripley, B., Matsumura, H., Yoneda, H., . (2001). Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur J Neurosci, 14, 1075–1081.
  • Zeitzer, J. M., Buckmaster, C. L., Parker, K. J., Hauck, C. M., Lyons, D. M., Mignot, E. (2003). Circadian and homeostatic regulation of hypocretin in a primate model: Implications for the consolidation of wakefulness. J Neurosci, 23, 3555–3560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.