1,409
Views
13
CrossRef citations to date
0
Altmetric
REGULAR SUBMISSIONS

PDA (Prolonged Depolarizing Afterpotential)–Defective Mutants: The Story of nina's and ina's—pinta and santa maria, Too

, &
Pages 216-237 | Received 08 Nov 2011, Accepted 16 Nov 2011, Published online: 27 Jan 2012

REFERENCES

  • Acharya, J. K., Jalink, K., Hardy, R. W., Hartenstein, V., &Zuker, C. S. (1997). InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron, 18, 881–887.
  • Acton, S., Rigotti, A., Landschulz, K. T., Xu, S., Hobbs, H. H., & Krieger, M. (1996). Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science, 271, 518–520.
  • Ahmad, S. T., Joyce, M. V., Boggess, B., & O’Tousa, J. E. (2006). The role of DrosophilaninaG oxidoreductase in visual pigment chromophore biogenesis. J Biol Chem, 281, 9205–9209.
  • Alloway, P. G., Howard, L., & Dolph, P. J. (2000). The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron, 28, 129–138.
  • Arikawa, K., Hicks, J. L., & Williams, D. S. (1990). Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J Cell Biol, 110, 1993–1998.
  • Bähner, M., Frechter, S., Da Silva, N., Minke, B., Paulsen, R., & Huber, A. (2002). Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron, 34, 83–93.
  • Baker, E. K., Colley, N. J., & Zuker, C. S. (1994). The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J, 13, 4886–4895.
  • Bandell, M., Macpherson, L. J., & Patapoutian, A. (2007). From chills to chilis: Mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr Opin Neurobiol, 17, 490–497.
  • Battelle, B. A., Dabdoub, A., Malone, M. A., Andrews, A. W., Cacciatore, C., Calman, B. G., . (2001). Immunocytochemical localization of opsin, visual arrestin, myosin III, and calmodulin in Limulus lateral eye retinular cells and ventral photoreceptors. J Comp Neurol, 435, 211–225.
  • Berg, J. S., Powell, B. C., & Cheney, R. E. (2001). A millennial myosin census. Mol Biol Cell, 12, 780–794.
  • Bermak, J. C., & Zhou, Q. Y. (2001). Accessory proteins in the biogenesis of G protein-coupled receptors. Mol Interv, 1, 282–287.
  • Caterina, M. J. (2007). Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol, 292, R64–R76.
  • Cheng, Y., & Nash, H. A. (2007). Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc Natl Acad Sci U S A, 104, 17730–17734.
  • Chevesich, J., Kreuz, A. J., & Montell, C. (1997). Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron, 18, 95–105.
  • Chou, W. H., Hall, K. J., Wilson, D. B., Wideman, C. L., Townson, S. M., Chadwell, L. V., . (1996). Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron, 17, 1101–1115.
  • Chou, W. H., Huber, A., Bentrop, J., Schulz, S., Schawb, K., Chadwell, L. V., (1999). Patterning of the R7 and R8 photoreceptor cells of Drosophila: Evidence for induced and default cell-fate specification. Development, 126, 607–616.
  • Chyb, S., Raghu, P., & Hardie, R. C. (1999). Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature, 397, 255–259.
  • Colley, N. J., Baker, E. K., Stamnes, M. A., & Zuker, C. S. (1991). The cyclophilin homolog ninaA is required in the secretory pathway. Cell, 67, 255–263.
  • Colley, N. J., Cassill, J. A., Baker, E. K., & Zuker, C. S. (1995). Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci U S A, 92, 3070–3074.
  • Cosens, D. J., & Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature, 224, 285–287.
  • Cowman, A. F., Zuker, C. S., & Rubin, G. M. (1986). An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye. Cell, 44, 705–710.
  • Cronin, M. A., Diao, F., & Tsunoda, S. (2004). Light-dependent subcellular translocation of Gqalpha in Drosophila photoreceptors is facilitated by the photoreceptor-specific myosin III NINAC. J Cell Sci, 117, 4797–4806.
  • Delgado, R., & Bacigalupo, J. (2009). Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal photoreceptor rhabdomeres: Activation by light and lipids. J Neurophysiol, 101, 2372–2379.
  • Delmas P., Crest M., Brown D. A. (2004). Functional organization of PLC signaling microdomains in neurons. Trends Neurosci, 27, 41–47.
  • Dolph, P. J., Ranganathan, R., Colley, N. J., Hardy, R. W., Socolich, M., & Zuker, C. S. (1993). Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science, 260, 1910–1916.
  • Dong, C., Filipeanu, C. M., Duvernay, M. T., & Wu, G. (2007). Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta, 1768, 853–870.
  • Dosé, A. C., & Burnside, B. (2000). Cloning and chromosomal localization of a human class III myosin. Genomics, 67, 333–342.
  • Dosé, A. C., Hillman, D. W., Wong, C., Sohlberg, L., Lin-Jones, J., & Burnside, B. (2003). Myo3A, one of two class III myosin genes expressed in vertebrate retina, is localized to the calycal processes of rod and cone photoreceptors and is expressed in the sacculus. Mol Biol Cell, 14, 1058–1073.
  • Dryja, T. P., & Berson, E. L. (1995). Retinitis pigmentosa and allied diseases. Implications of genetic heterogeneity. Invest Ophthalmol Vis Sci, 36, 1197–1200.
  • Dryja, T. P., Berson, E. L., Rao, V. R., & Oprian, D. D. (1993). Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet, 4, 280–283.
  • Dryja, T. P., McGee, T. L., Reichel, E., Hahn, L. B., Cowley, G. S., Yandell, D. W., . (1990). A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature, 343, 364–366.
  • Dwyer, N. D., Troemel, E. R., Sengupta, P., & Bargmann, C. I. (1998). Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell, 93, 455–466.
  • Engels, W. R. (1996). P elements in Drosophila. Curr Top Microbiol Immunol, 204, 103–123.
  • Ferreira, P. A., Hom, J. T., & Pak, W. L. (1995). Retina-specifically expressed novel subtypes of bovine cyclophilin. J Biol Chem, 270, 23179–23188.
  • Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., & Schmid, F. X. (1989). Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 337, 476–478.
  • Fryxell, K. J., & Meyerowitz, E. M. (1987). An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. EMBO J, 6, 443–451.
  • Giovannucci, D. R., & Stephenson, R. S. (1999). Identification and distribution of dietary precursors of the Drosophila visual pigment chromophore: Analysis of carotenoids in wild type and ninaD mutants by HPLC. Vision Res, 39, 219–229.
  • Goel, M., Garcia, R., Estacion, M., & Schilling, W. P. (2001). Regulation of Drosophila TRPL channels by immunophilin FKBP59. J Biol Chem, 276, 38762–38773.
  • Hardie, R. C. (2011). A brief history of trp: Commentary and personal perspective. Pflugers Arch, 461, 493–498.
  • Hardie, R. C., & Minke, B. (1992). The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron, 8, 643–651.
  • Hardie, R. C., Peretz, A., Suss-Toby, E., Rom-Glas, A., Bishop, S. A., Selinger, Z., . (1993). Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature, 363, 634–637.
  • Hardie, R. C., Raghu, P., Moore, S., Juusola, M., Baines, R. A., & Sweeney, S. T. (2001). Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron, 30, 149–159.
  • Harris, W. A., Stark, W. S., & Walker, J. A. (1976). Genetic dissection of the photoreceptor system in the compound eye of Drosophilamelanogaster. J Physiol, 256, 415–439.
  • Heisenberg, M. (1971). Isolation of mutants lacking the optomotor response. Dros Inf Serv, 46, 68.
  • Henderson, S. R., Reuss, H., & Hardie, R. C. (2000). Single photon responses in Drosophila photoreceptors and their regulation by Ca2+ . J Physiol, 524, 179–194.
  • Hicks, J. L., Liu, X., & Williams, D. S. (1996). Role of the ninaC proteins in photoreceptor cell structure: Ultrastructure of ninaC deletion mutants and binding to actin filaments. Cell Motil Cytoskeleton, 35, 367–379.
  • Hicks, J. L., & Williams, D. S. (1992). Distribution of the myosin I–like ninaC proteins in the Drosophila retina and ultrastructural analysis of mutant phenotypes. J Cell Sci, 101, 247–254.
  • Hillman, P., Hochstein, S., & Minke, B. (1972). A visual pigment with two physiologically active stable states. Science, 175, 1486–1488.
  • Hofstee, C. A., Henderson, S., Hardie, R. C., Stavenga, D. G. (1996). Differential effects of ninaC proteins (p132 and p174) on light-activated currents and pupil mechanism in Drosophila photoreceptors. Visual Neurosci, 13, 897–906.
  • Huang, J., Liu, C. H., Hughes, S. A., Postma, M., Schwiening, C. J., & Hardie, R. C. (2010). Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol, 20, 189–197.
  • Huber, A., Sander, P., Bahner, M., & Paulsen, R. (1998). The TRP Ca2 + channel assembled in a signaling complex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC). FEBS Lett, 425, 317–322.
  • Huber, A., Sander, P., Gobert, A., Bahner, M., Hermann, R., & Paulsen, R. (1996). The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J, 15, 7036–7045.
  • Huber A. (2001). Scaffolding proteins organize multimolecular protein complexes for sensory signal transduction. Eur J Neurosci, 14, 769–776.
  • Iakhine, R., Chorna-Ornan, I., Zars, T., Elia, N., Cheng, Y., Selinger, Z., . (2004). Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization. J Neurosci, 24, 2516–2526.
  • Inglehearn, C. F., Bashir, R., Lester, D. H., Jay, M., Bird, A. C., & Bhattacharya, S. S. (1991). A 3-bp deletion in the rhodopsin gene in a family with autosomal dominant retinitis pigmentosa. Am J Hum Genet, 48, 26–30.
  • Isono, K., Tanimura, T., Oda, Y., & Tsukahara, Y. (1988). Dependency on light and vitamin A derivatives of the biogenesis of 3-hydroxyretinal and visual pigment in the compound eyes of Drosophila melanogaster. J Gen Physiol, 92, 587–600.
  • Jin, M., Li, S., Moghrabi, W. N., Sun, H., & Travis, G. H. (2005). Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell, 122, 449–459.
  • Johnson, E. C., & Pak, W. L. (1986). Electrophysiological study of Drosophila rhodopsin mutants. J Gen Physiol, 88, 651–673.
  • Jukam, D., & Desplan, C. (2010). Binary fate decisions in differentiating neurons. Curr Opin Neurobiol, 20, 6–13.
  • Kambara, T., Komaba, S., & Ikebe, M. (2006). Human myosin III is a motor having an extremely high affinity for actin. J Biol Chem, 281, 37291–37301.
  • Katz, B., & Minke, B. (2009). Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci, 3, 2.
  • Kiefer, C., Sumser, E., Wernet, M. F., & Von Lintig, J. (2002). A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. Proc Natl Acad Sci U S A, 99, 10581–10586.
  • Kiselev, A., Socolich, M., Vinos, J., Hardy, R. W., Zuker, C. S., & Ranganathan, R. (2000). A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron, 28, 139–152.
  • Kleizen, B., & Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol, 16, 343–349.
  • Koenig, J., & Merriam, J. R. (1977). Autosomal ERG mutants. Dros Inf Serv, 52, 50–51.
  • Koenig, J. H. (1975). The isolation and preliminary characterization of autosomal electroretinogram defective mutants in Drosophilamelanogaster. Dissertation.
  • Komaba, S., Inoue, A., Maruta, S., Hosoya, H., & Ikebe, M. (2003). Determination of human myosin III as a motor protein having a protein kinase activity. J Biol Chem, 278, 21352–21360.
  • Kosloff, M., Elia, N., Joel-Almagor, T., Timberg, R., Zars, T. D., Hyde, D. R., . (2003). Regulation of light-dependent Gqalpha translocation and morphological changes in fly photoreceptors. EMBO J, 22, 459–468.
  • Kumar, J. P., & Ready, D. F. (1995). Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development, 121, 4359–4370.
  • Kurada, P., & O’Tousa, J. E. (1995). Retinal degeneration caused by dominant rhodopsin mutations in Drosophila. Neuron, 14, 571–579.
  • Kurada, P., Tonini, T. D., Serikaku, M. A., Piccini, J. P., & O’Tousa, J. E. (1998). Rhodopsin maturation antagonized by dominant rhodopsin mutants. Vis Neurosci, 15, 693–700.
  • Kwon, Y., Shim, H. S., Wang, X., & Montell, C. (2008). Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci, 11, 871–873.
  • Langer H. (1967). Über die Pigmentgranula im Facettenauge von Calliphora erythrocephala. Z Vergl Physiol, 55, 354–377.
  • Larrivee, D. C., Conrad, S. K., Stephenson, R. S., & Pak, W. L. (1981). Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. J Gen Physiol, 78, 521–545.
  • Lee, S. J., Xu, H., Kang, L. W., Amzel, L. M., Montell, C. (2003). Light adaptation through phosphoinositide-regulated translocation of Drosophila visual arrestin. Neuron, 39, 121–132.
  • Leonard, D. S., Bowman, V. D., Ready, D. F., & Pak, W. L. (1992). Degeneration of photoreceptors in rhodopsin mutants of Drosophila. J Neurobiol, 23, 605–626.
  • Leung, H. T., Tseng-Crank, J., Kim, E., Mahapatra, C., Shino, S., Zhou, Y., . (2008). DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron, 58, 884–896.
  • LeVine, H., ., 3rd, Smith, D. PWhitney, M., Malicki, D. M., Dolph, P. J., Smith, G. F., . (1990). Isolation of a novel visual-system-specific arrestin: An in vivo substrate for light-dependent phosphorylation. Mech Dev, 33, 19–25.
  • Li, C., Geng, C., Leung, H. T., Hong, Y. S., Strong, L. L., Schneuwly, S., . (1999). INAF, a protein required for transient receptor potential Ca2+ channel function. Proc Natl Acad Sci U S A, 96, 13474–13479.
  • Li, H. S., & Montell, C. (2000). TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol, 150, 1411–1422.
  • Li, H. S., Porter, J. A., & Montell, C. (1998). Requirement for the NINAC kinase/myosin for stable termination of the visual cascade. J Neurosci, 18, 9601–9606.
  • Liu, C. H., Satoh, A. K., Postma, M., Huang, J., Ready, D. F., & Hardie, R. C. (2008). Ca2+ -dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron, 59, 778–789.
  • Liu, M., Parker, L. L., Wadzinski, B. E., & Shieh, B. H. (2000). Reversible phosphorylation of the signal transduction complex in Drosophila photoreceptors. J Biol Chem, 275, 12194–12199.
  • Liu, W., Wen, W., Wei, Z., Yu, J., Ye, F., Liu, C. H., . (2011). The INAD scaffold is a dynamic, redox-regulated modulator of signaling in the Drosophila eye. Cell, 145, 1088–1101.
  • Matsudaira, P. T., & Burgess, D. R. (1979). Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol, 83, 667–673.
  • Matsumoto, H., Isono, K., Pye, Q., & Pak, W. L. (1987). Gene encoding cytoskeletal proteins in Drosophila rhabdomeres. Proc Natl Acad Sci U S A, 84, 985–989.
  • Matsumoto, H., & Pak, W. L. (1984). Light-induced phosphorylation of retina-specific polypeptides of Drosophila in vivo. Science, 223, 184–186.
  • Matsumoto, H., & Yamada, T. (1991). Phosrestins I and II: Arrestin homologs which undergo differential light-induced phosphorylation in the Drosophila photoreceptor in vivo. Biochem Biophys Res Commun, 177, 1306–1312.
  • Mecklenburg, K. L., Takemori, N., Komori, N., Chu, B., Hardie, R. C., Matsumoto, H., . (2010). Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila. J Neurosci, 30, 1238–1249.
  • Meyer, N. E., Joel-Almagor, T., Frechter, S., Minke, B., & Huber, A. (2006). Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J Cell Sci, 119, 2592–2603.
  • Minke B, Wu. C.-F., Pak W. L. (1975). Isolation of light-induced response of the central retinula cells from the electroretinogram of Drosophila. J Comp Physiol, 98, 345–355.
  • Mishra, P., Socolich, M., Wall, M. A., Graves, J., Wang, Z., & Ranganathan, R. (2007). Dynamic scaffolding in a G protein-coupled signaling system. Cell, 131, 80–92.
  • Mismer, D., Michael, W. M., Laverty, T. R., & Rubin, G. M. (1988). Analysis of the promoter of the Rh2 opsin gene in Drosophilamelanogaster. Genetics, 120, 173–180.
  • Montell, C., Jones, K., Zuker, C., & Rubin, G. (1987). A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophilamelanogaster. J Neurosci, 7, 1558–1566.
  • Montell, C., & Rubin, G. M. (1988). The DrosophilaninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell, 52, 757–772.
  • Morante, J., Desplan, C., & Celik, A. (2007). Generating patterned arrays of photoreceptors. Curr Opin Genet Dev, 17, 314-319.
  • Nathans, J., & Hogness, D. S. (1983). Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell, 34, 807–814.
  • Nathans, J., & Hogness, D. S. (1984). Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci U S A, 81, 4851–4855.
  • Nolte, J., & Brown, J. E. (1972). Ultraviolet-induced sensitivity to visible light in ultraviolet receptors of Limulus. J Gen Physiol, 59, 186–200.
  • O’Tousa, J. E., Baehr, W., Martin, R. L., Hirsh, J., Pak, W. L., & Applebury, M. L. (1985). The DrosophilaninaE gene encodes an opsin. Cell, 40, 839–850.
  • O’Tousa, J. E., Leonard, D. S., & Pak, W. L. (1989). Morphological defects in oraJK84 photoreceptors caused by mutation in R1–6 opsin gene of Drosophila. J Neurogenet, 6, 41–52.
  • Oberhauser, V., Voolstra, O., Bangert, A., von Lintig, J., & Vogt, K. (2008). NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proc Natl Acad Sci U S A, 105, 19000–19005.
  • Ostroy, S. E., Wilson, M., & Pak, W. L. (1974). Drosophila rhodopsin: Photochemistry, extraction and differences in the norpAP12 phototransduction mutant. Biochem Biophys Res Commun, 59, 960–966.
  • Pak, W. L. (1979). Study of photoreceptor function using Drosophila mutants. In X. O. Breakfield. Neurogenetics: Genetic approaches to the nervous system (pp 67–99). New York: Elsevier.
  • Pak, W. L. (2010). Why Drosophila to study phototransduction? J Neurogenet, 24, 55–66.
  • Pak, W. L., Conrad, S. K., Kremer, N. E., Larrivee, D. C., Schinz, R. H., & Wong, F. (1980). Photoreceptor function. Basic Life Sci, 16, 331–346.
  • Pak, W. L., Grossfield, J., & White, N. V. (1969). Nonphototactic mutants in a study of vision of Drosophila. Nature, 222, 351–354.
  • Pak, W. L., & Lidington, K. J. (1974). Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J Gen Physiol, 63, 740–756.
  • Papatsenko, D., Sheng, G., & Desplan, C. (1997). A new rhodopsin in R8 photoreceptors of Drosophila: Evidence for coordinate expression with Rh3 in R7 cells. Development, 124, 1665–1673.
  • Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G., & Pak, W. L. (1996). Molecular, biochemical, and electrophysiological characterization of DrosophilanorpA mutants. J Biol Chem, 271, 4937–4945.
  • Pollock, J. A., & Benzer, S. (1988). Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific. Nature, 333, 779–782.
  • Popescu, D. C., Ham, A. J., & Shieh, B. H. (2006). Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by eye protein kinase C in Drosophila. J Neurosci, 26, 8570–8577.
  • Porter, J. A., Hicks, J. L., Williams, D. S., & Montell, C. (1992). Differential localizations of and requirements for the two DrosophilaninaC kinase/myosins in photoreceptor cells. J Cell Biol, 116, 683–693.
  • Porter, J. A., Minke, B., & Montell, C. (1995). Calmodulin binding to Drosophila NinaC required for termination of phototransduction. EMBO J, 14, 4450–4459.
  • Porter, J. A., Yu, M., Doberstein, S. K., Pollard, T. D., & Montell, C. (1993). Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science, 262, 1038–1042.
  • Raghu, P., Colley, N. J., Webel, R., James, T., Hasan, G., Danin, M., . (2000a). Normal phototransduction in Drosophila photoreceptors lacking an InsP3 receptor gene. Mol Cell Neurosci, 15, 429–445.
  • Raghu, P., Usher, K., Jonas, S., Chyb, S., Polyanovsky, A., & Hardie, R. C. (2000b). Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron, 26, 169–179.
  • Ranganathan, R., Harris, G. L., Stevens, C. F., & Zuker, C. S. (1991). A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature, 354, 230–232.
  • Rao, V. R., Cohen, G. B., & Oprian, D. D. (1994). Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature, 367, 639–642.
  • Robinson, P. R., Cohen, G. B., Zhukovsky, E. A., & Oprian, D. D. (1992). Constitutively active mutants of rhodopsin. Neuron, 9, 719–725.
  • Roof, D. J., Adamian, M., & Hayes, A. (1994). Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest Ophthalmol Vis Sci, 35, 4049–4062.
  • Rosenbaum, E. E., Hardie, R. C., & Colley, N. J. (2006). Calnexin is essential for rhodopsin maturation, Ca2+ regulation, and photoreceptor cell survival. Neuron, 49, 229–241.
  • Salcedo, E., Huber, A., Henrich, S., Chadwell, L. V., Chou, W. H., Paulsen, R., . (1999). Blue- and green-absorbing visual pigments of Drosophila: Ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci, 19, 10716–10726.
  • Sarfare, S., Ahmad, S. T., Joyce, M. V., Boggess, B., & O’Tousa, J. E. (2005). The DrosophilaninaG oxidoreductase acts in visual pigment chromophore production. J Biol Chem, 280, 11895–11901.
  • Satoh, A. K., & Ready, D. F. (2005). Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival. Curr Biol, 15, 1722–1733.
  • Scavarda, N. J., O’Tousa, J., & Pak, W. L. (1983). Drosophila locus with gene-dosage effects on rhodopsin. Proc Natl Acad Sci U S A, 80, 4441–4445.
  • Schaeffer, E., Smith, D., Mardon, G., Quinn, W., & Zuker, C. (1989). Isolation and characterization of two new Drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells. Cell, 57, 403–412.
  • Schinz, R. H., Lo, M. V., Larrivee, D. C., & Pak, W. L. (1982). Freeze-fracture study of the Drosophila photoreceptor membrane: Mutations affecting membrane particle density. J Cell Biol, 93, 961–967.
  • Schneuwly, S., Shortridge, R. D., Larrivee, D. C., Ono, T., Ozaki, M., & Pak, W. L. (1989). DrosophilaninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). Proc Natl Acad Sci U S A, 86, 5390–5394.
  • Scott, K., Sun, Y., Beckingham, K., & Zuker, C. S. (1997). Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell, 91, 375–383.
  • Seki, T., Fujishita, S., Ito, M., Matsuoka, N., Kobayashi, C., & Tsukida, K. (1986). A fly, Drosophilamelanogaster, forms 11-cis 3-hydroxyretinal in the dark. Vision Res, 26, 255–258.
  • Seki, T., Isono, K., Ito, M., & Katsuta, Y. (1994). Flies in the group Cyclorrhapha use (3S)-3-hydroxyretinal as a unique visual pigment chromophore. Eur J Biochem, 226, 691–696.
  • Shen, W. L., Kwon, Y., Adegbola, A. A., Luo, J., Chess, A., & Montell, C. (2011). Function of rhodopsin in temperature discrimination in Drosophila. Science, 331, 1333–1336.
  • Shieh, B. H., & Niemeyer, B. (1995). A novel protein encoded by the InaD gene regulates recovery of visual transduction in Drosophila. Neuron, 14, 201–210.
  • Shieh, B. H., Parker, L., & Popescu, D. (2002). Protein kinase C (PKC) isoforms in Drosophila. J Biochem, 132, 523–527.
  • Shieh, B. H., Stamnes, M. A., Seavello, S., Harris, G. L., & Zuker, C. S. (1989). The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature, 338, 67–70.
  • Shieh, B. H., & Zhu, M. Y. (1996). Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron, 16, 991–998.
  • Shieh, B. H., Zhu, M. Y., Lee, J. K., Kelly, I. M., Bahiraei, F. (1997). Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo. Proc Natl Acad Sci U S A, 94, 12682–12687.
  • Smith, D. P., Ranganathan, R., Hardy, R. W., Marx, J., Tsuchida, T., & Zuker, C. S. (1991). Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science, 254, 1478–1484.
  • Stamnes, M. A., Shieh, B. H., Chuman, L., Harris, G. L., & Zuker, C. S. (1991). The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell, 65, 219–227.
  • Stark, W. S. (1973). The effect of eye colour pigments on the action spectrum of Drosophila. J Insect Physiol, 19, 999–1006.
  • Stark, W. S., & Sapp, R. (1987). Ultrastructure of the retina of Drosophilamelanogaster: The mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). J Neurogenet, 4, 227–240.
  • Stephenson, R. S., O’Tousa, J., Scavarda, N. J., Randall, L. L., & Pak, W. L. (1983). Drosophila mutants with reduced rhodopsin content. Symp Soc Exp Biol, 36, 477–501.
  • Strother, G. K., & Casella, A. J. (1972). Microspectrophotometry of arthropod visual screening pigments. J Gen Physiol, 59, 616–636.
  • Sung, C. H., Davenport, C. M., Hennessey, J. C., Maumenee, I. H., Jacobson, S. G., Heckenlively, J. R., . (1991). Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A, 88, 6481–6485.
  • Sung, C. H., Makino, C., Baylor, D., & Nathans, J. (1994). A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci, 14, 5818–5833.
  • Suzuki, T., Makino-Tasaka, M., & Eguchi, E. (1984). 3-Dehydroretinal (vitamin A2 aldehyde) in crayfish eye. Vision Res, 24, 783–787.
  • Takahashi, N., Hayano, T., & Suzuki, M. (1989). Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature, 337, 473–475.
  • Tsunoda, S., Sierralta, J., Sun, Y., Bodner, R., Suzuki, E., Becker, A., . (1997). A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature, 388, 243–249.
  • Tsunoda, S., Sun, Y., Suzuki, E., & Zuker, C. (2001). Independent anchoring and assembly mechanisms of INAD signaling complexes in Drosophila photoreceptors. J Neurosci, 21, 150–158.
  • van Huizen, R., Miller, K., Chen, D. M., Li, Y., Lai, Z. C., Raab, R. W., . (1998). Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J, 17, 2285–2297.
  • Venkatachalam, K., Wasserman, D., Wang, X., Li, R., Mills, E., Elsaesser, R., . (2010). Dependence on a retinophilin/myosin complex for stability of PKC and INAD and termination of phototransduction. J Neurosci, 30, 11337–11345.
  • Vogt, K. (1989). Distribution of insect visual chromophores: Functional and phylogenetic aspects (pp. 134–151). xx: Springer.
  • von Lintig, J., & Vogt, K. (2000). Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem, 275, 11915–11920.
  • Voolstra, O., Kiefer, C., Hoehne, M., Welsch, R., Vogt, K., & von Lintig, J. (2006). The Drosophila class B scavenger receptor NinaD-I is a cell surface receptor mediating carotenoid transport for visual chromophore synthesis. Biochemistry, 45, 13429–13437.
  • Voolstra, O., Oberhauser, V., Sumser, E., Meyer, N. E., Maguire, M. E., Huber, A., . (2010). NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. J Biol Chem, 285, 2130–2139.
  • Walsh T., Walsh V., Vreugde S., Hertzano R., Shahin H., Haika S., (2002). From flies’ eyes to our ears: Mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci U S A, 99, 7518–7523.
  • Wang, T., Jiao, Y., & Montell, C. (2007). Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction. J Cell Biol, 177, 305–316.
  • Wang, T., & Montell, C. (2005). Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein. J Neurosci, 25, 5187–5194.
  • Wang, T., & Montell, C. (2007). Phototransduction and retinal degeneration in Drosophila. Pflugers Arch, 454, 821–847.
  • Wes, P. D., Xu, X. Z., Li, H. S., Chien, F., Doberstein, S. K., & Montell, C. (1999). Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nat Neurosci, 2, 447–453.
  • Williams, D. B. (2006). Beyond lectins: The calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci, 119, 615–623.
  • Wu, J., Matunis, M. J., Kraemer, D., Blobel, G., & Coutavas, E. (1995). Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem, 270, 14209–14213.
  • Xu, X.-Z. S., Choudhury, A., Li, X., & Montell, C. (1998). Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J Cell Biol, 142, 545–555.
  • Yokoyama, N., Hayashi, N., Seki, T., Pante, N., Ohba, T., Nishii, K., . (1995). A giant nucleopore protein that binds Ran/TC4. Nature, 376, 184–188.
  • Zuker, C. S., Cowman, A. F., & Rubin, G. M. (1985). Isolation and structure of a rhodopsin gene from D. melanogaster. Cell, 40, 851–858.
  • Zuker, C. S., Montell, C., Jones, K., Laverty, T., & Rubin, G. M. (1987). A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: Homologies with other signal-transducing molecules. J Neurosci, 7, 1550–1557.