320
Views
12
CrossRef citations to date
0
Altmetric
Review Article

From Drosophila to Humans: Reflections on the Roles of the Prolyl Isomerases and Chaperones, Cyclophilins, in Cell Function and Disease

&
Pages 132-143 | Received 10 Oct 2011, Accepted 01 Dec 2011, Published online: 14 Feb 2012

REFERENCES

  • Abagyan, R., Orry, A., Raush, E., & Totrov, M. (2010). ICM User Guide 3.7. La Jolla, CA: Molsoft LLC.
  • Abagyan, R., & Totrov, M. (1994). Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol, 235, 983–1002
  • Abagyan, R., Totrov, M., & Kuznetsov, D. (1994). ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem, 15, 488–506.
  • Abagyan, R. A., & Batalov, S.(1997). Do aligned sequences share the same fold? J Mol Biol, 273, 355–368.
  • Allain, F., Vanpouille, C., Carpentier, M., Slomianny, M.C., Durieux, S., & Spik, G. (2002). Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix. Proc Natl Acad Sci USA, 99, 2714–2719.
  • Allen, A., Zheng, Y., Gardner, L., Safford, M., Horton, M.R., & Powell, J.D. (2004). The novel cyclophilin binding compound, sanglifehrin A, disassociates G1 cell cycle arrest from tolerance induction. J Immunol, 172, 4797–4803.
  • Arevalo-Rodriguez, M., Cardenas, M.E., Wu, X., Hanes, S.D., & Heitman, J. (2000). Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J, 19, 3739–3749.
  • Baker, E.K., Colley, N.J., & Zuker, C.S. (1994). The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J, 13, 4886–4895.
  • Barnes, A.M., Carter, E.M., Cabral, W.A., Weis, M., Chang, W., Makareeva, E., Leikin, S., Rotimi, C.N., Eyre, D.R., Raggio, C.L., . (2010). Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N Engl J Med, 362, 521–528.
  • Bauer, K., Kretzschmar, A.K., Cvijic, H., Blumert, C., Loffler, D., Brocke-Heidrich, K., Schiene-Fischer, C., Fischer, G., Sinz, A., Clevenger, C.V., . (2009). Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma cells. Oncogene, 28, 2784–2795.
  • Bernasconi, R., Galli, C., Calanca, V., Nakajima, T., & Molinari, M. (2010a). Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. J Cell Biol, 188, 223–235.
  • Bernasconi, R., Solda, T., Galli, C., Pertel, T., Luban, J., & Molinari, M. (2010b). Cyclosporine A-sensitive, cyclophilin B-dependent endoplasmic reticulum-associated degradation. PLoS ONE, 5, e13008
  • Billich, A., Winkler, G., Aschauer, H., Rot, A., & Peichl, P. (1997). Presence of cyclophilin A in synovial fluids of patients with rheumatoid arthritis. J Exp Med, 185, 975–980.
  • Britt, S.G., Feiler, R., Kirschfeld, K., & Zuker, C.S. (1993). Spectral tuning of rhodopsin and metarhodopsin in vivo. Neuron, 11, 29–39.
  • Choi, J.W., Sutor, S.L., Lindquist, L., Evans, G.L., Madden, B.J., Bergen, H.R., 3rd, Hefferan, T.E., Yaszemski, M.J., & Bram, R.J. (2009). Severe osteogenesis imperfecta in cyclophilin B-deficient mice. PLoS Genet, 5, e1000750.
  • Colgan, J., Asmal, M., Yu, B., & Luban, J. (2005). Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine. J Immunol, 174, 6030–6038.
  • Colley, N.J., Baker, E.K., Stamnes, M.A., & Zuker, C.S. (1991). The cyclophilin homolog ninaA is required in the secretory pathway. Cell, 67, 255–263.
  • Davis, T.L., Walker, J.R., Campagna-Slater, V., Finerty, P.J., Paramanathan, R., Bernstein, G., MacKenzie, F., Tempel, W., Ouyang, H., Lee, W.H., . (2010). Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol, 8, e1000439.
  • De Ceuninck, F., Allain, F., Caliez, A., Spik, G., & Vanhoutte, P.M. (2003). High binding capacity of cyclophilin B to chondrocyte heparan sulfate proteoglycans and its release from the cell surface by matrix metalloproteinases: Possible role as a proinflammatory mediator in arthritis. Arthritis Rheum, 48, 2197–2206.
  • Dolinski, K., Muir, S., Cardenas, M., & Heitman, J. (1997). All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 94, 13093–13098.
  • Dryja, T.P., Hahn, L.B., Cowley, G.S., McGee, T.L., & Berson, E.L. (1991). Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA, 88, 9370–9374.
  • Fernandez-Recio J., Totrov M., Skorodumov C. & Abagyan R. (2005) Proteins, 58, 134–143.
  • Ferreira, P.A., Hom, J.T., & Pak, W.L. (1995). Retina-specifically expressed novel subtypes of bovine cyclophilin. J Biol Chem, 270, 23179–23188.
  • Ferreira, P.A., Nakayama, T.A., Pak, W.L., & Travis, G.H. (1996). Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature, 383, 637–640.
  • Ferreira, P.A., Nakayama, T.A., & Travis, G.H. (1997). Interconversion of red opsin isoforms by the cyclophilin-related chaperone protein Ran-binding protein 2. Proc Natl Acad Sci USA, 94, 1556–1561.
  • Fischer, G., Bang, H., & Mech, C. (1984). Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biomed Biochim Acta, 43, 1101–1111.
  • Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., & Schmid, F.X. (1989). Cyclophilin and peptidyl-prolyl cis- trans isomerase are probably identical proteins. Nature, 337, 476–478.
  • Friedman, J., & Weissman, I. (1991). Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: One in the presence and one in the absence of CsA. Cell, 66, 799–806.
  • Galat, A., & Bouet, F. (1994). Cyclophilin-B is an abundant protein whose conformation is similar to cyclophilin-A. FEBS Lett, 347, 31–36.
  • Galat, A., & Bua, J. (2010). Molecular aspects of cyclophilins mediating therapeutic actions of their ligands. Cell Mol Life Sci, 67, 3467–3488.
  • Galy, A., Roux, M.J., Sahel, J.A., Leveillard, T., & Giangrande, A. (2005). Rhodopsin maturation defects induce photoreceptor death by apoptosis: A fly model for Rhodopsin Pro23His human retinitis pigmentosa. Hum Mol Genet, 14, 2547–2557.
  • Hamdorf, K., & Razmjoo, S. (1979). Photoconvertible pigment states and excitation in Calliphora; the induction and properties of the prolonged depolarizing afterpotential. Biophys Struct Mech, 5, 137–161.
  • Handschumacher, R.E., Harding, M.W., Rice, J., Drugge, R.J., & Speicher, D.W. (1984). Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science, 226, 544–547.
  • Harding, M.W., Galat, A., Uehling, D.E., & Schreiber, S.L. (1989). A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature, 341, 758–760.
  • Harding, M.W., Handschumacher, R.E., and Speicher, D.W. (1986). Isolation and amino acid sequence of cyclophilin. J Biol Chem, 261, 8547–8555.
  • Hartong, D.T., Berson, E.L., & Dryja, T.P. (2006). Retinitis pigmentosa. Lancet, 368, 1795–1809.
  • Ishikawa, Y., Vranka, J., Wirz, J., Nagata, K., & Bachinger, H.P. (2008). The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J Biol Chem, 283, 31584–31590.
  • Jakob, R.P., & Schmid, F.X. (2009). Molecular determinants of a native-state prolyl isomerization. J Mol Biol, 387, 1017–1031.
  • Kallen, J., Spitzfaden, C., Zurini, M.G., Wider, G., Widmer, H., Wuthrich, K., & Walkinshaw, M.D. (1991). Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature, 353, 276–279.
  • Kallen, J., & Walkinshaw, M.D. (1992). The X-ray structure of a tetrapeptide bound to the active site of human cyclophilin A. FEBS Lett, 300, 286–290.
  • Ke, H.M., Zydowsky, L.D., Liu, J., & Walsh, C.T. (1991). Crystal structure of recombinant human T-cell cyclophilin A at 2.5 Å resolution. Proc Natl Acad Sci USA, 88, 9483–9487.
  • Larrivee, D.C., Conrad, S.K., Stephenson, R.S., & Pak, W.L. (1981). Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. J Gen Physiol, 78, 521–545.
  • Liu, J., Farmer, J.D., Jr., Lane, W.S., Friedman, J., Weissman, I., & Schreiber, S.L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 66, 807–815.
  • Lu, K.P., Hanes, S.D., & Hunter, T. (1996). A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature, 380, 544–547.
  • Medyouf, H., Alcalde, H., Berthier, C., Guillemin, M.C., dos Santos, N.R., Janin, A., Decaudin, D., de The, H., & Ghysdael, J. (2007). Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med, 13, 736–741.
  • Medyouf, H., & Ghysdael, J. (2008). The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell Cycle, 7, 297–303.
  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equation of state calculations by fast computing machines. J Chem Phys, 21, 1087–1092.
  • Minke, B. (1986). Photopigment-dependent adaptation in invertebrates: implications for vertebrates. In H. Stieve (Ed.), The Molecular Mechanisms of Photoreception (pp. 241–265). Berlin: Dahlem Konferenzen, Springer.
  • Moparthi, S.B., Fristedt, R., Mishra, R., Almstedt, K., Karlsson, M., Hammarstrom, P., & Carlsson, U. (2010). Chaperone activity of Cyp18 through hydrophobic condensation that enables rescue of transient misfolded molten globule intermediates. Biochemistry, 49, 1137–1145.
  • Moparthi, S.B., Hammarstrom, P., & Carlsson, U. (2009). A nonessential role for Arg 55 in cyclophilin18 for catalysis of proline isomerization during protein folding. Prot Sci, 18, 475–479.
  • Needleman, S.B., & Wunsch, C.D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol, 48, 443–453.
  • Nigro, P., Satoh, K., O'Dell, M.R., Soe, N.N., Cui, Z., Mohan, A., Abe, J., Alexis, J.D., Sparks, J.D., & Berk, B.C. (2011). Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-deficient mice. J Exp Med, 208, 53–66.
  • Ondek, B., Hardy, R.W., Baker, E.K., Stamnes, M.A., Shieh, B.H., & Zuker, C.S. (1992). Genetic dissection of cyclophilin function. Saturation mutagenesis of the Drosophila cyclophilin homolog ninaA. J Biol Chem, 267, 16460–16466.
  • Ou, W.B., Luo, W., Park, Y.D., & Zhou, H.M. (2001). Chaperone-like activity of peptidyl-prolyl cis-trans isomerase during creatine kinase refolding. Prot Sci, 10, 2346–2353.
  • Pak, W.L. (1979). Study of photoreceptor function using Drosophila mutants. In X. Breakfield (Ed.), Neurogenetics: Genetic Approaches to the Nervous System (pp. 67–99). New York: Elsevier.
  • Pak, W.L. (1995). Drosophila in vision research. The Friedenwald Lecture. Invest Ophthalmol Vis Sci, 36, 2340–2357.
  • Papatsenko, D., Sheng, G., & Desplan, C. (1997). A new rhodopsin in R8 photoreceptors of Drosophila: Evidence for coordinate expression with Rh3 in R7 cells. Development, 124, 1665–1673.
  • Pflugl, G., Kallen, J., Schirmer, T., Jansonius, J.N., Zurini, M.G., & Walkinshaw, M.D. (1993). X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature, 361, 91–94.
  • Price, E.R., Jin, M., Lim, D., Pati, S., Walsh, C.T., & McKeon, F.D. (1994). Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc Natl Acad Sci USA, 91, 3931–3935.
  • Price, E.R., Zydowsky, L.D., Jin, M.J., Baker, C.H., McKeon, F.D., & Walsh, C.T. (1991). Human cyclophilin B: A second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci USA, 88, 1903–1907.
  • Pyott, S.M., Schwarze, U., Christiansen, H.E., Pepin, M.G., Leistritz, D.F., Dineen, R., Harris, C., Burton, B.K., Angle, B., Kim, K., . (2011). Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum Mol Gen, 20, 1595–1609.
  • Radzicka, A., & Wolfenden, R. (1995). A proficient enzyme. Science, 267, 90–93.
  • Ranganathan, R., Lu, K.P., Hunter, T., & Noel, J.P. (1997). Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell, 89, 875–886.
  • Rao, A., Luo, C., & Hogan, P.G. (1997). Transcription factors of the NFAT family: Regulation and function. Annu Rev Immunol, 15, 707–747.
  • Reidt, U., Wahl, M.C., Fasshauer, D., Horowitz, D.S., Luhrmann, R., & Ficner, R. (2003). Crystal structure of a complex between human spliceosomal cyclophilin H and a U4/U6 snRNP-60K peptide. J Mol Biol, 331, 45–56.
  • Reimer, U., & Fischer, G. (2002). Local structural changes caused by peptidyl-prolyl cis/trans isomerization in the native state of proteins. Biophys Chem, 96, 203–212.
  • Satoh, K., Nigro, P., Matoba, T., O'Dell, M.R., Cui, Z., Shi, X., Mohan, A., Yan, C., Abe, J., Illig, K.A., . (2009). Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med, 15, 649–656.
  • Schapira, M., Totrov, M., & Abagyan, R. (1999). Prediction of the binding energy for small molecules, peptides and proteins. J Mol Recognit, 12, 177–190.
  • Schiene-Fischer, C., Aumuller, T., & Fischer, G. (2011). Peptide bond cis/trans isomerases: A biocatalysis perspective of conformational dynamics in proteins. Top Curr Chem, 1–33
  • Schneuwly, S., Shortridge, R.D., Larrivee, D.C., Ono, T., Ozaki, M., & Pak, W.L. (1989). DrosophilaninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). Proc Natl Acad Sci USA, 86, 5390–5394.
  • Schreiber, S.L. (1991). Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science, 251, 283–287.
  • Schreiber, S.L. (1992). Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell, 70, 365–368.
  • Sherry, B., Yarlett, N., Strupp, A., & Cerami, A. (1992). Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci USA, 89, 3511–3515.
  • Shieh, B.H., Stamnes, M.A., Seavello, S., Harris, G.L., & Zuker, C.S. (1989). The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature, 338, 67–70.
  • Smajlovic, A., Berbic, S., Schiene-Fischer, C., Tusek-Znidaric, M., Taler, A., Jenko-Kokalj, S., Turk, D., & Zerovnik, E. (2009). Essential role of Pro 74 in stefin B amyloid-fibril formation: Dual action of cyclophilin A on the process. FEBS Lett, 583, 1114–1120.
  • Smith, T., Ferreira, L.R., Hebert, C., Norris, K., & Sauk, J.J. (1995). Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum. J Biol Chem, 270, 18323–18328.
  • Snyder, S.H., Lai, M.M., & Burnett, P.E. (1998). Immunophilins in the nervous system. Neuron, 21, 283–294.
  • Stamnes, M.A., Shieh, B.H., Chuman, L., Harris, G.L., & Zuker, C.S. (1991). The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell, 65, 219–227.
  • Stephenson, R.S., O'Tousa, J., Scavarda, N.J., Randall, L.L., & Pak, W.L. (1983). Drosophila mutants with reduced rhodopsin content. In D. J. Cosens & D. Vince-Price (Eds.), The Biology of Photoreception (pp. 477–501). Cambridge, UK: Cambridge University Press.
  • Takahashi, N., Hayano, T., & Suzuki, M. (1989). Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature, 337, 473–475.
  • Tryon, R.C., White, S.D., Famula, T.R., Schultheiss, P.C., Hamar, D.W., & Bannasch, D.L. (2005). Inheritance of hereditary equine regional dermal asthenia in Quarter Horses. Am J Vet Res, 66, 437–442.
  • van Dijk, F.S., Nesbitt, I.M., Zwikstra, E.H., Nikkels, P.G., Piersma, S.R., Fratantoni, S.A., Jimenez, C.R., Huizer, M., Morsman, A.C., Cobben, J.M., . (2009). PPIB mutations cause severe osteogenesis imperfecta. J Hum Genet, 85, 521–527.
  • Vidal, M., Wells, S., Ryan, A., & Cagan, R. (2005). ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res, 65, 3538–3541.
  • Wang, X., Zhang, S., Zhang, J., Huang, X., Xu, C., Wang, W., Liu, Z., Wu, J., & Shi, Y. (2010). A large intrinsically disordered region in SKIP and its disorder-order transition induced by PPIL1 binding revealed by NMR. J Biol Chem, 285, 4951–4963.
  • Wang, Y., Han, R., Zhang, W., Yuan, Y., Zhang, X., Long, Y., & Mi, H. (2008). Human CyP33 binds specifically to mRNA and binding stimulates PPIase activity of hCyP33. FEBS Lett, 582, 835–839.
  • Weininger, U., Jakob, R.P., Eckert, B., Schweimer, K., Schmid, F.X., & Balbach, J. (2009). A remote prolyl isomerization controls domain assembly via a hydrogen bonding network. Proc Natl Acad Sci USA, 106, 12335–12340.
  • Wu, J., Matunis, M.J., Kraemer, D., Blobel, G., & Coutavas, E. (1995). Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem, 270, 14209–14213.
  • Xu, C., Zhang, J., Huang, X., Sun, J., Xu, Y., Tang, Y., Wu, J., Shi, Y., Huang, Q., & Zhang, Q. (2006). Solution structure of human peptidyl prolyl isomerase-like protein 1 and insights into its interaction with SKIP. J Biol Chem, 281, 15900–15908.
  • Yang, Y., Lu, N., Zhou, J., Chen, Z.N., & Zhu, P. (2008). Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology, 47, 1299–1310.
  • Yokoyama, N., Hayashi, N., Seki, T., Pante, N., Ohba, T., Nishii, K., Kuma, K., Hayashida, T., Miyata, T., Aebi, U., . (1995). A giant nucleopore protein that binds Ran/TC4. Nature, 376, 184–188.
  • Zuker, C.S. (1996). The biology of vision of Drosophila. Proc Natl Acad Sci USA, 93, 571–576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.