230
Views
2
CrossRef citations to date
0
Altmetric
Review Article

The Regulations of Drosophila Phototransduction

, &
Pages 144-150 | Received 16 Oct 2011, Accepted 13 Dec 2011, Published online: 15 Mar 2012

REFERENCES

  • Acharya, J. K., Jalink, K., Hardy, R. W., Hartenstein, V., & Zuker, C. S. (1997). InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron, 18, 881–887.
  • Adamski, F. M., Zhu, M. Y., Bahiraei, F., & Shieh, B. H. (1998). Interaction of eye protein kinase C and INAD in Drosophila. Localization of binding domains and electrophysiological characterization of a loss of association in transgenic flies. J Biol Chem, 273, 17713–17719.
  • Alloway, P. G., & Dolph, P. J. (1999). A role for the light-dependent phosphorylation of visual arrestin. Proc Natl Acad Sci U S A, 96, 6072–6077.
  • Bähner, M., Frechter, S., Da Silva, N., Minke, B., Paulsen, R., & Huber, A. (2002). Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron, 34, 83–93.
  • Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G., & Pak, W. L. (1988). Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell, 54, 723–733.
  • Cheng, Y., & Nash, H. A. (2007). Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc Natl Acad Sci U S A, 104, 17730–17734.
  • Chevesich, J., Kreuz, A. J., & Montell, C. (1997). Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron, 18, 95–105.
  • Cho, K.-O., Wall, J. B., Pugh, P. C., Ito, M., Mueller, S. A., & Kennedy, M. B. (1991). The a subunit of type II Ca2 + /calmodulindependent protein kinase is highly conserved in Drosophila. Neuron, 7, 439–450.
  • Chyb, S., Raghu, P., & Hardie, R. C. (1999). Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature, 397, 255–259.
  • Colombini, M., Blachly-Dyson, E., & Forte, M. (1996). VDAC, a channel in the outer mitochondrial membrane. Ion Channels, 4, 169–202.
  • Cook, B., Bar-Yaacov, M., Cohen Ben-Ami, H., Goldstein, R. E., Paroush, Z., Selinger, Z., & Minke, B. (2000). Phospholipase C and termination of G-protein-mediated signaling in vivo. Nat Cell Biol, 2, 296–301.
  • Griffith, L. C., Verselis, L. M., Aitken, K. M., Kyriacou, C. P., Danho, W., & Greenspan, R. J. (1993). Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron, 10, 501–509.
  • Gu, Y., Oberwinkler, J., Postma, M., & Hardie, R. C. (2005). Mechanisms of light adaptation in Drosophila photoreceptors. Curr Biol, 15, 1228–1234.
  • Hardie, R. C., Martin, F., Cochrane, G. W., Juusola, M., Georgiev, P., & Raghu, P. (2002). Molecular basis of amplification in Drosophila phototransduction: Roles for G protein, phospholipase C, and diacylglycerol kinase. Neuron, 36, 689–701.
  • Hardie, R. C., Peretz, A., Suss-Toby, E., Rom-Glas, A., Bishop, S. A., Selinger, Z., & Minke, B. (1993). Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature, 363, 634–637.
  • Huber, A., Sander, P., Gobert, A., Bahner, M., Hermann, R., & Paulsen, R. (1996). The transient receptor potential protein (Trp), a putative store-operated Ca2 + channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J, 15, 7036–7045.
  • Huber, A., Sander, P., & Paulsen, R. (1996). Phosphorylation of the InaD gene product, a photoreceptor membrane protein required for recovery of visual excitation. J Biol Chem, 271, 11710–11717.
  • Hyde, D. R., Mecklenburg, K. L., Pollock, J. A., Vihtelic, T. S., & Benzer, S. (1990). Twenty Drosophila visual system cDNA clones: One is a homolog of human arrestin. Proc Natl Acad Sci U S A, 87, 1008–1012.
  • Kahn, E. S., & Matsumoto, H. (1997). Calcium/calmodulin-dependent kinase IIphosphorylates Drosophila visual arrestin. J Neurochem, 68, 169–175.
  • Kawamura, S. (1993). Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature, 362, 855–857.
  • Lee, S., Leung, H.-T., Kim, E., Jang, J., Lee, E., Baek, K., Pak, W. L., & Yoon, J. (2007). Effects of a mutation in the Drosophila porin gene encoding mitochondrial voltage-dependent anion channel protein on phototransduction. Dev Neurobiol, 67, 1533–1545.
  • Leung, H.-T., An, L., Tseng-Crank, J., Kim, E., Harness, E. L., Zhou, Y., Kitamoto, J., Li, G., Doerge, R. W., & Pak, W. L. (2007). Phototransduction in Drosophila: Use of microarrays in cloning genes identified by chemically induced mutations causing ERG defects. In S. J. Fliesler & O. G. Kisselev (Eds.), Signal transduction in the retina (pp. 195–217). Boca Raton, FL: CRC Press.
  • Leung, H.-T., Geng, C., & Pak, W. L. (2000). Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP) and TRP-like channels in Drosophila. J Neurosci, 20, 6797–6803.
  • Leung, H.-T., Tseng-Crank, J., Kim E., Mahapatra, C., Shino, S., Zhou, Y., An, L., Doerge, R. W., & Pak, W. L. (2008). DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron, 58, 884–896.
  • Li, C., Geng, C., Leung, H.-T., Hong, Y.-S., Strong, L. L., Schneuwly, S., & Pak, W. L. (1999). INAF, a protein required for transient receptor potential Ca2 + channel function. Proc Natl Acad Sci U S A, 96, 13474–13479.
  • Li, H. S., & Montell, C. (2000). TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol, 150, 1411–1422.
  • Liu, M., Parker, L. L., Wadzinski, B. E., & Shieh, B. H. (2000). Reversible phosphorylation of the signal transduction complex in Drosophila photoreceptors. J Biol Chem, 275, 12194–12199.
  • Lu, H., Leung, H.-T., Wang, N., Pak, W. L., & Shieh, B. H. (2009). Role of Ca2 +/calmodulin dependent protein kinase II in Drosophila photoreceptors. J Biol Chem, 284, 11100–11109
  • Masai, I., Okazaki, A., Hosoya, T., & Hotta, Y. (1993). Drosophila retinal degeneration A gene encodes an eye-specific diacylglycerol kinase with cysteine-rich zinc-finger motifs and ankyrin repeats. Proc Natl Acad Sci U S A, 90, 11157–11161.
  • Matsumoto, H., Kurien, B. T., Takagi, Y., Kahn, F. S., Kinumi, T., Komori, N., Yamada, I., Hayashi, F., Isono, K., Pak, W. L., Jackson, K. W., & Tohin, S. L. (1994). Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Neuron, 12, 997–1010.
  • Matsumoto, H., & Pak, W. L. (1984). Light-induced phosphorylation of retina-specific polypeptides of Drosophila in vivo. Science, 223, 184–186.
  • Minke, B., Wu C.-F., & Pak, W. L. (1975a). Isolation of light-induced response of the central retinula cells from the electroretinogram of Drosophila. J. Comp. Physiol. A Sens. Neural Behav, Physiol. 98, 345–355.
  • Minke, B., Wu, C.-F., & Pak, W.L. (1975b). Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 258, 84–87.
  • Niemeyer, B. A., Suzuki, E., Scott, K., Jalink, K., & Zuker, C. S. (1996). The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell, 85, 651–659.
  • Ohsako, S., Nishida, Y., Ryo, H., & Yamauchi, T. (1993). Molecular characterization and expression of the Drosophila Ca2 + /calmodulin-dependent protein kinase II gene. Identification of four forms of the enzyme generated from a single gene by alternative splicing. J Biol Chem, 268, 2052–2062.
  • Ostroy, S. E., & Pak, W. L. (1974). Protein and electroretinogram changes in the alleles of the nopAP12 Drosophila phototranduction mutant. Biochem Biophys Acta, 368, 259–269.
  • Pak, W. L. (2010). Why Drosophila to study phototransduction? J Neurogenet, 24, 55–66.
  • Pak, W. L, & Leung, H.-T. (2003). Genetic approaches to visual transduction in Dosophila melanogaster. In P. Chidiac (Ed.), Emerging aspects of heterotrimeric G protein-mediated signaling. Receptors Channels, 9, 149–167.
  • Pak, W. L., & Lidington, K. J. (1974). Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J Gen Physiol, 63,740–756.
  • Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G., & Pak, W. L. (1996). Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J Biol Chem, 271, 4937–4945.
  • Popescu, D. C., Ham, A. J., & Shieh, B. H. (2006). Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by eye protein kinase C in Drosophila. J Neurosci, 26, 8570–8577.
  • Ranganathan, R., Harris, G. L., Stevens, C. F., & Zuker, C. S. (1991). A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature, 354, 230–232.
  • Raghu, P., Colley, N. J., Webel, R., James, T., Hasan, G., Danin, M., Selinger, Z., & Hardie, R. C. (2000). Normal phototransduction in Drosophila photoreceptors lacking an InsP3 receptor gene. Mol Cell Neurosci, 15, 429–445.
  • Rostovtseva, T. K., Komarov, A., Bezrukov, S. M., & Colombini, M. (2002). VDAC channels differentiate between natural metabolites and synthetic molecules. J Membr Biol, 187, 147–156.
  • Shieh, B.-H., & M.-Y. Zhu. (1996). Regulation of the TRP Ca2 + channel by INAD in Drosophila photoreceptors. Neuron, 16: 991–998.
  • Shieh, B. H., Zhu, M. Y., Lee, J. K., Kelly, I. M., & Bahiraei, F. (1997). Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo. Proc Natl Acad Sci U S A, 11: 12682–12687.
  • Smith, D. P., Shieh, B. H., & Zuker, C. S. (1990). Isolation and structure of an arrestin gene from Drosophila. Proc Natl Acad Sci U S A, 87, 1003–1007.
  • Snaith, H. A., Armstrong, C. G., Guo, Y., Kaiser, K., & Cohen, P. T. (1996). Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles and prevents attachment of microtubules to the kinetochore in Drosophila microtubule star (mts) embryos. J Cell Sci, 109, 3001–3012.
  • Stowers, R.S., & Schwarz, T. L. (1999). A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics, 152, 1631–1639.
  • Stürmer, K., Baumann, O., & Walz, B. (1995). Actin-dependent light-induced translocation of mitochondria and ER cisternae in the photoreceptor cells of the locust Schistocerca gregaria. J Cell Sci, 108, 2273–2283.
  • Tsunoda, S., Sierralta, J., Sun,Y., Bodner, R., Suzuki, E., Becker, A., Socolich, M., & Zuker, C. S. (1997). A multivalent PDZ-domain protein assembles signaling complexes in a G-protein coupled cascade. Nature, 388, 243–249.
  • Wang, N., Leung, H.-T., Pak, W. L., Carl, Y. T., Wadzinski, B. E., & Shieh, B.-H. (2008). Role of protein phosphatase 2A in regulating the visual signaling in Drosophila. J. Neurosci, 28, 1444–1451.
  • Wang, T., Pentyala, S., Elliot, J. T., Dowal, L., Gupta, E., Rebecchi, M. J., & Scarlata, S. (1999). Selective interaction of the C2 domains of phospholipase C-β1 and -β2 with activated Gαq subunits: An alternative function for C2-signaling modules. Proc Natl Acad Sci U S A, 96, 7843–7846.
  • Yoon, J., Leung, H.-T., Lee, S., Geng, C., Kim, Y., Baek, K., & Pak, W. L. (2004). Specific molecular alterations in the norpA-encoded phospholipase C of Drosophila and their effects on electrophysiological responses in vivo. J Neurochem, 89, 998–1008.
  • Zhang, W., & Neer, E. J. (2001). Reassembly of phospholipase C-β2 from separated domains: Analysis of basal and G protein-stimulated activities. J Biol Chem, 276, 2503–2508

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.