310
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Kinase Signaling Dysfunction in Parkinson's Disease: A Reverse Genetic Approach in Drosophila

, , , &
Pages 158-167 | Received 07 Nov 2011, Accepted 28 Feb 2012, Published online: 10 Apr 2012

References

  • Andres-Mateos, E., Mejias, R., Sasaki, M., Li, X., Lin, B. M., Biskup, S., . (2009). Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci, 29, 15846–15850.
  • Bardien, S., Lesage, S., Brice, A., Carr, J. (2011). Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord, 17, 501–508.
  • Beal, M. F. (2003). Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann N Y Acad Sci, 991, 120–131.
  • Botella, J. A., Bayersdorfer, F., Gmeiner, F., Schneuwly, S. (2009). Modelling Parkinson’s disease in Drosophila. Neuromolecular Med, 11, 268–280.
  • Chen, L., Feany, M. B. (2005). alpha-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci, 8, 657–663.
  • Clark, I. E., Dodson, W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., . (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.
  • Deng, H., Dodson, M. W., Huang, H., & Guo, M. (2008). The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A, 105, 14503–14508.
  • Deng, J., Lewis, P. A., Greggio, E., Sluch, E., Beilina, A., & Cookson, M. R. (2008). Structure of the ROC domain from the Parkinson’s disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci U S A, 105, 1499–1504.
  • Di Fonzo, A., Rohe, C. F., Ferreira, J., Chien, H. F., Vacca, L., Stocchi, F., . (2005). A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet, 365, 412–415.
  • Emamian, E. S., Kaytor, M. D., Duvick, L. A., Zu, T., Tousey, S. K., Zoghbi, H. Y., (2003). Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron, 38, 375–387.
  • Fernandes, C., & Rao, Y. (2011). Genome-wide screen for modifiers of Parkinson’s disease genes in Drosophila. Mol Brain, 4, 17.
  • Frasier, M., Walzer, M., McCarthy, L., Magnuson, D., Lee, J. M., Haas, C., (2005). Tau phosphorylation increases in symptomatic mice overexpressing A30P alpha-synuclein. Exp Neurol, 192, 274–287.
  • Gehrke, S., Imai, Y., Sokol, N., & Lu, B. (2010). Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 466, 637–641.
  • Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., Singleton, A., Lees, A. J., (2005). A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet, 365, 415–416.
  • Gloeckner, C. J., Kinkl, N., Schumacher, A., Braun, R. J., O’Neill, E., Meitinger, T., (2006). The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet, 15, 223–232.
  • Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis, 23, 329–341.
  • Greggio, E., Zambrano, I., Kaganovich, A., Beilina, A., Taymans, J. M., Daniels, V., (2008). The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem, 283, 16906–16914.
  • Guo, L., Gandhi, P. N., Wang, W., Petersen, R. B., Wilson-Delfosse, A. L., & Chen, S. G. (2007). The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res, 313, 3658–3670.
  • Guo, M. (2010). What have we learned from Drosophila models of Parkinson’s disease? Prog Brain Res, 184, 3–16.
  • Hao, L. Y., Giasson, B. I., & Bonini, N. M. (2010). DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc Natl Acad Sci U S A, 107, 9747–9752.
  • Hunter, T. (2002). Tyrosine phosphorylation in cell signaling and disease. Keio J Med, 51, 61 –71.
  • Imai, Y., Gehrke, S., Wang, H. Q., Takahashi, R., Hasegawa, K., Oota, E., (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J, 27, 2432–2443.
  • Ito, G., Okai, T., Fujino, G., Takeda, K., Ichijo, H., Katada, T., (2007). GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry, 46, 1380–1388.
  • Kim, Y., Park, J., Kim, S., Song, S., Kwon, S. K., Lee, S. H., (2008). PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun, 377, 975–980.
  • Lee, B. D., Shin, J. H., VanKampen, J., Petrucelli, L., West, A. B., Ko, H. S., (2010). Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med, 16, 998–1000.
  • Lee, S., Liu, H. P., Lin, W. Y., Guo, H., & Lu, B. (2010). LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J Neurosci, 30, 16959 –16969.
  • Lee, S. B., Kim, W., Lee, S., & Chung, J. (2007). Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem Biophys Res Commun, 358, 534 –539.
  • Li, C., Geng, C., Leung, H. T., Hong, Y. S., Strong, L. L., Schneuwly, S., (1999). INAF, a protein required for transient receptor potential Ca(2+) channel function. Proc Natl Acad Sci U S A, 96, 13474–13479.
  • Li, Y., Liu, W., Oo, T. F., Wang, L., Tang, Y., Jackson-Lewis, V., (2009). Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci, 12, 826–828.
  • Lin, C. H., Tsai, P. I., Wu, R. M., & Chien, C. T. (2010). LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ss. J Neurosci, 30, 13138 –13149.
  • Liu, S., & Lu, B. (2010). Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet, 6, e1001237.
  • Liu, W., Acin-Perez, R., Geghman, K. D., Manfredi, G., Lu, B., & Li, C. (2011). Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc Natl Acad Sci U S A, 108, 12920 –12924.
  • Liu, W., Vives-Bauza, C., Acin-Perez, R., Yamamoto, A., Tan, Y., Li, Y., (2009). PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS One, 4, e4597.
  • Liu, Z., Hamamichi, S., Dae Lee, B., Yang, D., Ray, A., Caldwell, G. A., (2011). Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models. Hum Mol Genet, 20, 3933–3942.
  • Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., (2008). A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A, 105, 2693–2698.
  • Long, H., Sabatier, C., Ma, L., Plump, A., Yuan, W., Ornitz, D. M., (2004). Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron, 42, 213–223.
  • Lu, B., & Vogel, H. (2009). Drosophila models of neurodegenerative diseases. Annu Rev Pathol, 4, 315–342.
  • Morais, V. A., Verstreken, P., Roethig, A., Smet, J., Snellinx, A., Vanbrabant, M., (2009). Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med, 1, 99–111.
  • Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 8, e1000298.
  • Ng, C. H., Mok, S. Z., Koh, C., Ouyang, X., Fivaz, M. L., Tan, E. K., (2009). Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci, 29, 11257–11262.
  • Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease.[see comment]. Neuron, 44, 595–600.
  • Pak, W. L. (1995). Drosophila in vision research. The Friedenwald Lecture. Invest Ophthalmol Vis Sci, 36, 2340–2357.
  • Pak, W. L. (2010). Why Drosophila to study phototransduction? J Neurogenet, 24, 55–66.
  • Park, J., Kim, Y., & Chung, J. (2009). Mitochondrial dysfunction and Parkinson’s disease genes: Insights from Drosophila. Dis Model Mech, 2, 336–340.
  • Park J, ., L. SLee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J. M., & Chung, J. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441, 1157–1161.
  • Poole, A. C., Thomas, R. E., Andrews, L. A., McBride, H. M., Whitworth, A. J., & Pallanck, L. J. (2008). The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A, 105, 1638–1643.
  • Poole, A. C., Thomas, R. E., Yu, S., Vincow, E. S., & Pallanck, L. (2010). The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE, 5, e10054.
  • Rohe, C. F., Montagna, P., Breedveld, G., Cortelli, P., Oostra, B. A., & Bonifati, V. (2004). Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism. Ann Neurol, 56, 427–431.
  • Rothenfluh, A., Abodeely, M., Price, J. L., & Young, M. W. (2000). Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. Genetics, 156, 665–675.
  • Saunders-Pullman, R., Lipton, R. B., Senthil, G., Katz, M., Costan-Toth, C., Derby, C., (2006). Increased frequency of the LRRK2 G2019S mutation in an elderly Ashkenazi Jewish population is not associated with dementia. Neurosci Lett, 402, 92–96.
  • Sen, S., Webber, P. J., & West, A. B. (2009). Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J Biol Chem, 284, 36346–36356.
  • Smith, W. W., Pei, Z., Jiang, H., Dawson, V. L., Dawson, T. M., & Ross, C. A. (2006). Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci, 9, 1231–1233.
  • Tain, L. S., Mortiboys, H., Tao, R. N., Ziviani, E., Bandmann, O., & Whitworth, A. J. (2009). Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci, 12, 1129–1135.
  • Todd, A. M., & Staveley, B. E. (2008). Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson’s disease. Genome, 51, 1040–1046.
  • Tong, Y., Yamaguchi, H., Giaime, E., Boyle, S., Kopan, R., Kelleher, R. J., 3rd, (2010). Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A, 107, 9879–9884.
  • Tully, T. (1996). Discovery of genes involved with learning and memory: An experimental synthesis of Hirschian and Benzerian perspectives. Proc Natl Acad Sci U S A, 93, 13460–13467.
  • Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1 [see comment]. Science, 304, 1158–1160.
  • Valente, E. M., Salvi, S., Ialongo, T., Marongiu, R., Elia, A. E., Caputo, V., (2004). PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol, 56, 336–341.
  • Venderova, K., Kabbach, G., Abdel-Messih, E., Zhang, Y., Parks, R. J., Imai, Y., (2009). Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum Mol Genet, 18, 4390–4404.
  • Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A, 107, 378–383.
  • Vosshall, L. B. (2008). Scent of a fly. Neuron, 59, 685–689.
  • Wang, D., Qian, L.,Xiong, H., Liu, J., Neckameyer, W. S., Oldham, S., (2006). Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci U S A, 103, 13520–13525.
  • Wang, D., Tang, B., Zhao, G., Pan, Q., Xia, K., Bodmer, R., (2008). Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol Neurodegener, 3, 3.
  • West, A. B., Moore, D. J., Biskup, S., Bugayenko, A., Smith, W. W., Ross, C. A., (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A, 102, 16842–16847.
  • West, A. B., Moore, D. J., Choi, C., Andrabi, S. A., Li, X., Dikeman, D., (2007). Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet, 16, 223–232.
  • Whitworth, A. J. (2011). Drosophila models of Parkinson’s disease. Adv Genet, 73, 1 –50.
  • Whitworth, A. J., Lee, J. R., Ho, V. M., Flick, R., Chowdhury, R., & McQuibban, G. A. (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech, 1, 168 –174.
  • Xiong, H., Wang, D., Chen, L., Choo, Y. S., Ma, H., Tang, C., (2009). Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest, 119, 650–660.
  • Yang, Y., Gehrke, S., Imai, Y., Huang, Z., Ouyang, Y., Wang, J. W., (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A, 103, 10793–10798.
  • Yang, Y., Ouyang, Y., Yang, L., Beal, M. F., McQuibban, A., Vogel, H., (2008). Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A, 105, 7070–7075.
  • Yu, W., Sun, Y., Guo, S., & Lu, B. (2011). The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet, 20, 3227 –3240.
  • Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601–607.
  • Ziviani, E., Tao, R. N., & Whitworth, A. J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A, 107, 5018 –5023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.