333
Views
12
CrossRef citations to date
0
Altmetric
GENERAL GENETIC AND DEVELOPMENTAL MECHANISMS Review

Composition of a Neuromere and Its Segmental Diversification under the Control of Hox Genes in the Embryonic CNS of Drosophila

, , , &
Pages 171-180 | Received 25 Oct 2013, Accepted 18 Nov 2013, Published online: 08 Jul 2014

REFERENCES

  • Akiyama-Oda, Y., Hotta, Y., Tsukita, S., & Oda, H. (2000). Distinct mechanisms triggering glial differentiation in Drosophila thoracic and abdominal neuroblasts 6-4. Dev Biol, 222, 429–439.
  • Artavanis-Tsakonas, S., & Simpson, P. (1991). Choosing a cell fate: a view from the Notch locus. Trends Genet, 7, 403–408.
  • Beckervordersandforth, R., Rickert, C., Altenhein, B., & Technau, G. M. (2008). Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression. Mech Dev, 125, 542–557.
  • Bello, C. B., Hirth, F., & Gould, A. (2003). A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron, 37, 209–219.
  • Berger, C., Pallavi, S. K., Prasad, M., Shashidhara, L. S., & Technau, G. M. (2005). A critical role for Cyclin E in cell fate determination in the central nervous system of Drosophila. Nature Cell Biology, 7, 56–62.
  • Berger, C., Kannan, R., Myneni, S., Renner, S., Shashidhara, L. S., & Technau, G. M. (2010). Cell cycle independent role of Cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function. Dev Biol, 337, 415–424.
  • Bernardoni, R., Kammerer, M., Vonesch, J. L., & Giangrande, A. (1999). Gliogenesis depends on glide/gcm through asymmetric division of neuroglioblasts. Dev Biol, 216, 265–275.
  • Berni, J., Pulver, S. R., Griffith, L. C., & Bate, M. (2012). Autonomous circuitry for substrate exploration in freely moving Drosophila larvae. Curr Biol, 22, 1861–1870.
  • Bhat, K. M. (1999). Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays, 21, 472–485.
  • Biehs, B., Francois, V., & Bier, E. (1996). The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev, 10, 2922–2934.
  • Birkholz, O., Rickert, C., Berger, C., Urbach, R., & Technau, G. M. (2013a). Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors. Development, 140, 1830–1842.
  • Birkholz, O., Vef, O., Rogulja-Ortmann, A., Berger, C., & Technau, G. M. (2013b). Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development, 140, 3552–3564.
  • Bossing, T., & Technau, G. M. (1994). The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development, 120, 1895–1906.
  • Bossing, T., Udolph, G., Doe, C. Q., & Technau, G. M. (1996). The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol, 179, 41–64.
  • Broadus, J., Skeath, J. B., Spana, E. P., Bossing, T., Technau, G. M., & Doe, C. Q. (1995). New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mech Dev, 53, 393–402.
  • Campos-Ortega, J. A. (1995). Genetic mechanisms of early neurogenesis in Drosophila melanogaster. Mol Neurobiol, 10, 75–89.
  • Chell, J. M., & Brand, A. H. (2010). Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell, 143, 1161–1173.
  • Dickson, B. J., & Zou, Y. (2010). Navigating intermediate targets: The nervous system midline. Cold Spring Harb Perspect Biol, 2, a002055.
  • Dixit, R., Vijayraghavan, K., & Bate, M. (2008). Hox genes and the regulation of movement in Drosophila. Dev Neurobiol, 68, 309–316.
  • Doe, C. Q. (1992). Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development, 116, 855–863.
  • Freeman, M. R., & Doe, C. Q. (2001). Asymmetric Prospero localization is required to generate mixed neuronal/ glial lineages in the Drosophila CNS. Development, 128, 4103–4112.
  • Grueber, W. B., Ye, B., Yang, C. H., Younger, S., Borden, K., Jan, L. Y., & Jan, Y. N. (2007). Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development, 134, 55–64.
  • Haesemeyer, M., Yapici, N., Heberlein, U., & Dickson, B. J. (2009). Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron, 61, 511–518.
  • Ito, K., Urban J., & Technau G. M. 1995. Distribution, classification and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux's Arch Dev Biol, 204, 284–307.
  • Kambadur, R., Koizumi, K., Stivers, C., Nagle, J., Poole, S. J., & Odenwald, W. F. (1998). Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev, 12, 246–260.
  • Kannan, R., Berger, C., Myneni, S., Technau, G. M., & Shashidhara, L. S. (2010). Abdominal-A mediated repression of Cyclin E expression during cell-fate specification in the Drosophila central nervous system. Mech Dev, 127, 137–145.
  • Landgraf, M., Bossing, T., Technau, G. M., & Bate, M. (1997). The origin, location and projections of the embryonic abdominal motoneurons of Drosophila. J Neurosci, 17, 9642–9655.
  • Landgraf, M., Jeffery, V., Fujioka, M., Jaynes, J. B., & Bate, M. (2003). Underlying principles of motor system organization revealed. PLoS Biol, 1, 221–230.
  • Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature, 276, 565–570.
  • Lüer, K., & Technau, G. M. (2009). Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy. Neural Dev, 4, 1–16.
  • Maurange, C., Cheng, L., & Gould, A. P. (2008). Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell, 133, 891–902.
  • Merritt, D. J., & Whitington, P. M. (1995). Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function. J Neurosci, 15, 1755–1767.
  • Miguel-Aliaga, I., & Thor, S. (2004). Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development, 131, 6093–6105.
  • Peterson, C., Carney, G. E., Taylor, B. J., & White, K. (2002). reaper is required for neuroblast apoptosis during Drosophila development. Development, 129, 1467–1476.
  • Prokop, A., & Technau, G. M. (1991). The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development, 111, 79–88.
  • Prokop, A., & Technau, G. M. (1994). Early tagma-specific commitment of Drosophila CNS progenitor NB1-1. Development, 120, 2567–2578.
  • Prokop, A., Bray, S., Harrison, E., & Technau, G. M. (1998). Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mech Dev, 74, 99–110.
  • Rezaval, C., Pavlou, H. J., Dornan, A. J., Chan, Y. B., Kravitz, E. A., & Goodwin, S. F. (2012). Neural circuitry underlying Drosophila female postmating behavioral responses. Curr Biol, 22, 1155–1165.
  • Rickert, C., Kunz, T., Harris, K. L., Whitington, P. M., & Technau G. M. (2011). Morphological characterization of the entire interneuron population reveals principles of neuromere organisation in the ventral nerve cord of Drosophila. J Neurosci, 31, 15870–15883.
  • Rickert, C., Kunz, T., Harris, K. L., Whitington, P., & Technau, G. M. (2013). Labeling of Single Cells in the Central Nervous System of Drosophila melanogaster. J Vis Exp, 73, e50150. doi:10.3791/50150.
  • Rogulja-Ortmann, A., Lüer, K., Seibert, J., Rickert, C., & Technau, G. M. (2007). Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development, 134, 105–116.
  • Rogulja-Ortmann, A., & Technau, G. M. (2008). Multiple roles for Hox genes in segment-specific shaping of CNS lineages. Fly, 2, 316–319.
  • Rogulja-Ortmann, A., Renner, S., & Technau, G. M. (2008). Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development, 35, 3435–3445.
  • Schmidt, H., Rickert, C., Bossing, T., Vef, O., Urban, J., & Technau, G. M. (1997). The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol, 189, 186–204.
  • Schmid, A., Chiba, A., & Doe, C. Q. (1999). Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development, 126, 4653–4689.
  • Schrader, S., & Merritt, D. J. (2000). Central projections of Drosophila sensory neurons in the transition from embryo to larva. J Comp Neurol, 425, 34–44.
  • Skeath, J. B. (1999). At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays, 21, 922–931.
  • Sousa-Nunes, R., Yee, L. L., & Gould, A. P. (2011). Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature, 471, 508–512.
  • St Johnston, D., & Nüsslein-Volhard, C. (1992). The origin of pattern and polarity in the Drosophila embryo. Cell, 68, 201–219.
  • Suska, A., Miguel-Aliaga, I., & Thor, S. (2011). Segment-specific generation of Drosophila Capability neuropeptide neurons by multi-faceted Hox cues. Dev Biol, 353, 72–80.
  • Suster, M. L., & Bate, M. (2002), Embryonic assembly of a central pattern generator without sensory input. Nature, 416, 174–178.
  • Taylor, B. J., & Truman, J. W. (1992). Commitment of abdominal neuroblasts in Drosophila to a male or female fate is dependent on genes of the sex-determining hierarchy. Development, 114, 625–642.
  • Technau, G. M., & Campos-Ortega, J. A. (1985). Fate-mapping in wild-type Drosophila melanogaster. II. Injections of horseradish peroxidase in cells of the early gastrula stage. Roux's Arch Dev Biol, 194, 196–212.
  • Truman, J. W., & Bate, M. (1988). Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol, 125, 145–157.
  • Tsuji, T., Hasegawa, E., & Isshiki, T. (2008). Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development, 135, 3859–3869.
  • Udolph, G., Prokop, A., Bossing, T., & Technau, G. M. (1993). A common precursor for glia and neurons in the embryonic CNS of Drosophila gives rise to segment-specific lineage variants. Development, 118, 765–775.
  • Urbach, R., & Technau, G. M. (2003). Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development, 130, 3621–3637.
  • Urbach, R., Schnabel, R., & Technau, G. M. (2003). The pattern of neuroblast formation, mitotic domains, and proneural gene expression during early brain development in Drosophila. Development, 130, 3589–3606.
  • von Hilchen, C., Beckervordersandforth, R., Rickert, C., Technau, G. M., & Altenhein, B. (2008). Identity, origin and migration of peripheral glial cells in the Drosophila embryo. Mech Dev, 125, 337–352.
  • White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K., & Steller, H. (1994). Genetic control of programmed cell death in Drosophila. Science, 264, 677–683.
  • White, K., Tahaoglu, E., & Steller, H. (1996). Cell killing by the Drosophila gene reaper. Science, 271, 805–807.
  • Wu, Z., Sweeney, L. B., Ayoob, J. C., Chak, K., Andreone, B. J., Ohyama, T., et al. (2011). A combinatorial Semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron, 70, 281–298.
  • Zlatic, M., Li, F., Strigini, M., Grueber, W., & Bate, M. (2009). Positional cues in the Drosophila Nerve Cord: Semaphorins Pattern the dorso-ventral axis. PLoS Biol, 7, e1000135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.