297
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Collective Cell Migration: “All for One and One for All”

&
Pages 190-198 | Received 15 Jan 2014, Accepted 18 Feb 2014, Published online: 07 May 2014

REFERENCES

  • Aigouy, B., Lepelletier, L., & Giangrande, A. (2008). Glial chain migration requires pioneer cells. J Neurosci, 28, 11635–11641.
  • Aigouy, B., Van de Bor, V., Boeglin, M., & Giangrande, A. (2004). Time-lapse and cell ablation reveal the role of cell interactions in fly glia migration and proliferation. Development, 131, 5127–5138.
  • Altenhein, B., Becker, A., Busold, C., Beckmann, B., Hoheisel, J. D., & Technau, G. M. (2006). Expression profiling of glial genes during Drosophila embryogenesis. Dev Biol, 296, 545–560.
  • Belmadani, A., Tran, P. B., Ren, D., Assimacopoulos, S., Grove, E. A., & Miller, R. J. (2005). The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci, 25, 3995–4003.
  • Berzsenyi, S., Kumar, A., & Giangrande, A. (2011). Homeostatic interactions at the front of migration control the integrity and the efficiency of a migratory glial chain. J Neurosci, 31, 13722–13727.
  • Cantor, J. M., Ginsberg, M. H., & Rose, D. M. (2008). Integrin-associated proteins as potential therapeutic targets. Immunol Rev, 223, 236–251.
  • Dambly-Chaudiere, C., Cubedo, N., & Ghysen, A. (2007). Control of cell migration in the development of the posterior lateral line: Antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol, 7, 23.
  • David, N. B., Sapede, D., Saint-Etienne, L., Thisse, C., Thisse, B., Dambly-Chaudiere, C., & Ghysen, A. (2002). Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci U S A, 99, 16297–16302.
  • Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., & Raz, E. (2002). Guidance of primordial germ cell migration by the chemokine SDF-1. Cell, 111, 647–659.
  • Edenfeld, G., Altenhein, B., Zierau, A., Cleppien, D., Krukkert, K., Technau, G., & Klambt, C. (2007). Notch and Numb are required for normal migration of peripheral glia in Drosophila. Dev Biol, 301, 27–37.
  • Egger B., Leemans, R., Loop, T., Kammermeier, L., Fan, Y., Radimerski, T., Strahm, M. C., Certa, U., & Reichert H. (2002). Gliogenesis in Drosophila: Genome-wide analysis of downstream genes of glial cells missing in the embryonic nervous system. Development, 129, 3295–3309.
  • Francis, F., Meyer, G., Fallet-Bianco, C., Moreno, S., Kappeler, C., Socorro, A. C., Tuy, F. P., Beldjord, C., & Chelly, J. (2006). Human disorders of cortical development: From past to present. Eur J Neurosci, 23, 877–893.
  • Franzdottir, S. R., Engelen, D., Yuva-Aydemir, Y., Schmidt, I., Aho, A., & Klambt, C. (2009). Switch in FGF signalling initiates glial differentiation in the Drosophila eye. Nature, 460, 758–761.
  • Freeman, M. R., Delrow, J., Kim, J., Johnson, E., & Doe, C. Q. (2003). Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron, 38, 567–580.
  • Friedl, P., & Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol, 10, 445–457.
  • Ghysen, A., & Dambly-Chaudière, C. (2004). Development of the zebrafish lateral line. Curr Opin Neurobiol, 14, 67–73.
  • Giangrande, A., Murray, M. A., & Palka, J. (1993). Development and organization of glial cells in the peripheral nervous system of Drosophila melanogaster. Development, 117, 895–904.
  • Giesen, K., Hummel, T., Stollewerk, A., Harrison, S., Travers, A., & Klambt, C. (1997). Glial development in the Drosophila CNS requires concomitant activation of glial and repression of neuronal differentiation genes. Development, 124, 2307–2316.
  • Haas, P., & Gilmour, D. (2006). Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell, 10, 673–680.
  • Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y., & Krasnow, M. A. (1998). sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell, 92, 253–263.
  • Halter, D. A., Urban, J., Rickert, C., Ner, S. S., Ito K., Travers, A. A., & Technau, G. M. (1995). The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. Development121, 317–332.
  • Horwitz, A. R., & Parsons, J. T. (1999). Cell migration—movin’ on. Science, 286, 1102–1103.
  • Horwitz, R., & Webb, D. (2003). Cell migration. Curr Biol, 13, R756–R759.
  • Hosoya, T., Takizawa K., Nitta, K., & Hotta Y. (1995). glial cells missing: A binary switch between neuronal and glial determination in Drosophila. Cell82, 1025–1036.
  • Insall, R. H., & Machesky, L. M. (2009). Actin dynamics at the leading edge: From simple machinery to complex networks. Dev Cell, 17, 310–322.
  • Jones, B. W., Fetter, R. D., Tear, G., & Goodman, C. S. (1995). glial cells missing: A genetic switch that controls glial versus neuronal fate. Cell, 82, 1013–1023.
  • Keleman, K., and Dickson, B. J. (2001). Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron, 32, 605–617.
  • Klambt, C. (1993). The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development, 117, 163–176.
  • Klambt, C. (2009). Modes and regulation of glial migration in vertebrates and invertebrates. Nat Rev Neurosci, 10, 769–779.
  • Klambt, C., & Goodman, C. S. (1991). The diversity and pattern of glia during axon pathway formation in the Drosophila embryo. Glia, 4, 205–213.
  • Knaut, H., Werz, C., Geisler, R., & Nusslein-Volhard, C. (2003). A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature, 421, 279–282.
  • Kramer, S., Okabe, M., Hacohen, N., Krasnow, M. A., & Hiromi, Y. (1999). Sprouty: A common antagonist of FGF and EGF signaling pathways in Drosophila. Development, 126, 2515–2525.
  • Lin, D. M., Auld, V. J., & Goodman, C. S. (1995). Targeted neuronal cell ablation in the Drosophila embryo: Pathfinding by follower growth cones in the absence of pioneers. Neuron, 14, 707–715.
  • Lois, C., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1996). Chain migration of neuronal precursors. Science, 271, 978–981.
  • Manzini, M. C., & Walsh, C. A. (2011). What disorders of cortical development tell us about the cortex: One plus one doesn't always make two. Curr Opin Genet Dev, 21, 333–339.
  • Murase, S., & Horwitz, A. F. (2002). Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci, 22, 3568–3579.
  • Murase, S., & Horwitz, A. F. (2004). Directions in cell migration along the rostral migratory stream: The pathway for migration in the brain. Curr Top Dev Biol, 61, 135–152.
  • Murase, S., Cho, C., White, J. M., & Horwitz, A. F. (2008). ADAM2 promotes migration of neuroblasts in the rostral migratory stream to the olfactory bulb. Eur J Neurosci, 27, 1585–1595.
  • Murray, M. A., Schubiger, M., & Palka, J. (1984). Neuron differentiation and axon growth in the developing wing of Drosophila melanogaster. Dev Biol, 104, 259–273.
  • Nguyen-Ba-Charvet, K. T., Picard-Riera, N., Tessier-Lavigne, M., Baron-Van Evercooren, A., Sotelo, C., & Chedotal, A. (2004). Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci, 24, 1497–1506.
  • Parent, C. A., & Devreotes, P. N. (1999). A cell's sense of direction. Science, 284, 765–770.
  • Peled A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., … & Lapidot T. (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 283, 845–848.
  • Petrie, R. J., Doyle, A. D., & Yamada, K. M. (2009). Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol, 10, 538–549.
  • Rangarajan, R., Gong, Q., & Gaul, U. (1999). Migration and function of glia in the developing Drosophila eye. Development, 126, 3285–3292.
  • Reddy, B. V., & Irvine, K. D. (2011). Regulation of Drosophila glial cell proliferation by Merlin-Hippo signaling. Development, 138, 5201–5212.
  • Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., & Horwitz, A. R. (2003). Cell migration: Integrating signals from front to back. Science, 302, 1704–1709.
  • Rorth, P. (2009). Collective cell migration. Annu Rev Cell Dev Biol, 25, 407–429.
  • Sepp, K. J., & Auld, V. J. (2003). RhoA and Rac1 GTPases mediate the dynamic rearrangement of actin in peripheral glia. Development, 130, 1825–1835.
  • Sepp, K. J., Schulte, J., & Auld, V. J. (2001). Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev Biol, 238, 47–63.
  • Shih, W., & Yamada, S. (2012). N-cadherin-mediated cell-cell adhesion promotes cell migration in a three-dimensional matrix. J Cell Sci, 125(Pt 15), 3661–3670.
  • Silies, M., & Klambt, C. (2010). APC/C(Fzr/Cdh1)-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS. Nat Neurosci, 13, 1357–1364.
  • Silies, M., Yuva, Y., Engelen, D., Aho, A., Stork, T., & Klambt, C. (2007). Glial cell migration in the eye disc. J Neurosci, 27, 13130–13139.
  • Soustelle, L., Aigouy, B., Asensio, M. L., & Giangrande, A. (2008). UV laser mediated cell selective destruction by confocal microscopy. Neural Dev, 3, 11.
  • Theveneau, E., & Mayor, R. (2013). Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci, 70, 3481–3492.
  • Tran, P. B., & Miller, R. J. (2003). Chemokine receptors: Signposts to brain development and disease. Nat Rev Neurosci, 4, 444–455.
  • Valentin, G., Haas, P., & Gilmour, D. (2007). The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol, 17, 1026–1031.
  • Van De Bor, V., Walther, R., & Giangrande, A. (2000). Some fly sensory organs are gliogenic and require glide/gcm in a precursor that divides symmetrically and produces glial cells. Development, 127, 3735–3743.
  • Vincent, S., Vonesch, J. L., & Giangrande, A. (1996). Glide directs glial fate commitment and cell fate switch between neurones and glia. Development, 12, 131–139.
  • von Hilchen, C. M., Beckervordersandforth, R. M., Rickert, C., Technau, G. M., & Altenhein, B. (2008). Identity, origin, and migration of peripheral glial cells in the Drosophila embryo. Mech Dev, 125, 337–352.
  • von Hilchen, C. M., Bustos, A. E., Giangrande, A., Technau, G. M., & Altenhein, B. (2013). Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system. Development, 140, 3657–3668.
  • von Hilchen, C. M., Hein, I., Technau, G. M., & Altenhein, B. (2010). Netrins guide migration of distinct glial cells in the Drosophila embryo. Development, 137, 1251–1262.
  • Yuasa Y., Okabe, M., Yoshikawa, S., Tabuchi, K., Xiong, W. C., Hiromi, Y., & Okano H. (2003). Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors. Development, 130, 2419–2428.
  • Yuva-Aydemir, Y., & Klambt, C. (2011). Long-range signaling systems controlling glial migration in the Drosophila eye. Dev Neurobiol, 71, 1310–1316.
  • Whitlock, K. E. (1993). Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules. Development, 117, 1251–1260.
  • Wolfram, V., Southall, T. D., Brand, A. H., & Baines, R. A. (2012). The LIM-homeodomain protein islet dictates motor neuron electrical properties by regulating K(+) channel expression. Neuron, 754, 663–674.
  • Woong, S., Hyun, K., & Younghye, M. (2010). Control of neuronal migration through rostral migratory stream in mice. Anat Cell Biol, 43, 269–279.
  • Xiong, W. C., Okano, H., Patel, N. H., Blendy, J. A., & Montell, C. (1994). repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Genes Dev, 88, 981–994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.