748
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Drosophila Neural Stem Cells in Brain Development and Tumor Formation

&
Pages 181-189 | Received 17 Dec 2013, Accepted 21 Feb 2014, Published online: 12 May 2014

REFERENCES

  • Bayraktar, O. A., & Doe, C. Q. (2013). Combinatorial temporal patterning in progenitors expands neural diversity. Nature, 498, 449–455.
  • Bello, B., Izergina, N., Caussinus, E., & Reichert, H. (2008). Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev, 3, 5.
  • Bello, B., Reichert, H., & Hirth, F. (2006). The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development, 133, 2639–2648.
  • Berger, C., Harzer, H., Burkard, T. R., Steinmann, J., van der Horst, S., Laurenson, A. S., Novatchkova, M., Reichert, H., & Knoblich, J.A. (2012). FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep, 2, 407–418.
  • Betschinger, J., Mechtler, K., & Knoblich, J. A. (2006). Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell, 124, 1241–1253.
  • Boone, J. Q., & Doe, C. Q. (2008). Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol, 68, 1185–1195.
  • Bowman, S. K., Rolland, V., Betschinger, J., Kinesey, K.A., Emery, G., & Knoblich, J. A. (2008). The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell, 14, 535–546.
  • Brand, A. H., & Livesey, F. J. (2011). Neural stem cell biology in vertebrates and invertebrates: More alike than different?Neuron, 70, 719–729.
  • Caussinus, E., & Gonzalez, C. (2005). Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet, 37, 1125–1129.
  • Campos-Ortega, J. A. (1993). Early neurogenesis in Drosophila melanogaster. In M. Bate & A. M. Arias (Eds.), The development of Drosophila melanogaster (pp. 1091–1130). New York: Cold Spring Harbor Laboratory Press.
  • Campos-Ortega, J. A., & Hartenstein, V. (1997). The embryonic development of Drosophila melanogaster (2nd ed.). Heidelberg: Springer.
  • Chang, K. C., Wang, C., & Wang, H. (2012). Balancing self-renewal and differentiation by asymmetric division: Insights from brain tumor suppressors in Drosophila neural stem cells. Bioessays, 34, 301–310.
  • Choksi, S. P., Southall, T. D., Bossing, T., Edoff, K., de Wit, E., Fischer, B. E., van Steensel, B., Micklem, G., & Brand, A. H. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell, 11, 775–789.
  • Doe, C. Q. (2008). Neural stem cells: Balancing self-renewal with differentiation. Development, 135, 1575–1587.
  • Dyer, M. A., Livesey, F. J., Cepko, C. L., & Oliver, G. (2003). Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet, 34, 53–58.
  • Egger, B., Chell, J. M., & Brand, A. H. (2008). Insights into neural stem cell biology from flies. Philos Trans R Soc B,363, 39–56.
  • Gateff, E. (1978). Malignant neoplasms of genetic origin in Drosophila melanogaster. Science, 200, 1448–1459.
  • Goodman, C. S., & Doe, C. Q. (1993). Embryonic development of the Drosophila central nervous system. In M. Bate & A. M. Arias (Eds.), The development of Drosophila melanogaster (pp. 1131–1206). New York: Cold Spring Harbor Laboratory Press.
  • Gonzalez, C. (2013). Drosophila melanogaster: A model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer, 13, 172–183.
  • Hartenstein, V., Spindler, S., Pereanu, W., & Fung, S. (2008). The development of the Drosophila larval brain. In G. Technau (Ed), Brain development in Drosophila melanogaster (pp. 1–31). Austin, TX: Landes Bioscience.
  • Hirata, J., Nakagoshi, H., Nabeshima, Y., & Matsuzaki, F. (1995). Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature,377, 627–630.
  • Homem, C. C., & Knoblich, J. A. (2012). Drosophila neuroblasts: A model for stem cell biology. Development, 139, 4297–4310.
  • Ito, M., Masuda, N., Shinomiya, K., Endo, K., & Ito, K. (2013). Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr Biol, 23, 644–655.
  • Izergina, N., Balmer, J., Bello, B., & Reichert, H. (2009). Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev, 4, 44.
  • Jiang, Y., & Reichert, H. (2012). Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain. Neural Dev, 7, 3.
  • Knoblich, J. A. (2008). Mechanisms of asymmetric stem cell division. Cell, 132, 583–597.
  • Knoblich, J. A., Jan, L. Y., & Jan, Y. N. (1995). Asymmetric segregation of Numb and Prospero during cell division. Nature,377, 624–627.
  • Komori, H., Xiao, Q., McCartney, B. M., & Lee, C. Y. (2014). Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity. Development,141, 51–62.
  • Lee, C. Y., Andersen, R. O., Cabernard, C., Manning, L., Tran, K. D., Lanskey, M. J., Bashirullah, A., & Doe, C. Q. (2006a). Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev, 20, 3464–3474.
  • Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P., & Doe, C. Q. (2006b). Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell, 10, 441–449.
  • Li, H. S., Wang, D., Shen, Q., Schonemann, M. D., Gorski, J. A., Jones, K. R., Temple, S., Jan, L. Y., & Jan, Y. N. (2003). Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron, 40, 1105–1118.
  • Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annu Rev Cell Dev Biol, 21, 605–631.
  • Magee, J. A., Piskounova, E., & Morrison, S. J. (2012). Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283–296.
  • Miles, W. O., Dyson, N. J., & Walker, J. A. (2011). Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech, 4, 753–761.
  • Neumüller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: Asymmetric cell division and its implications for stem cells and cancer. Genes Dev, 23, 2675–2699.
  • Neumüller, R. A., Richter, C., Fischer, A., Novatchkova, M., Neumüller, K. G., & Knoblich, J. A. (2011). Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell, 8, 580–593.
  • Petersen, P. H., Zou, K., Hwang, J. K., Jan, Y. N., & Zhong, W. (2002). Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature, 419, 929–934.
  • Reichert, H. (2011). Drosophila neural stem cells: Cell cycle control of self-renewal, differentiation, and termination in brain development. Results Probl Cell Differ, 53, 529–546.
  • Read, R. D. (2011). Drosophila melanogaster as a model system for human brain cancers. Glia, 59, 1364–1376.
  • Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.
  • Rhyu, M. S., Jan, L. Y., & Jan, Y. N. (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell, 76, 477–491.
  • Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136, 913–925.
  • Song, Y., & Lu, B. (2011). Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila. Genes Dev, 25, 2644–2658.
  • Sousa-Nunes, R., Yee, L. L., & Gould, A. P. (2011). Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature, 471, 508–512.
  • Spana, E. P., & Doe, C. Q. (1995). The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development, 121, 3187–3195.
  • Spana, E. P., Kopczynski, C., Goodman, C. S., & Doe, C. Q. (1995). Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development, 121, 3489–3494.
  • Tsuji, T., Hasegawa, E., & Isshiki, T. (2008). Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development, 135, 3859–3869.
  • Urbach, R., & Technau, G. M. (2004). Neuroblast formation and patterning during early brain development in Drosophila. Bioessays, 26, 739–751.
  • Viktorin, G., Riebli, N., Popkova, A., Giangrande, A., & Reichert, H. (2011). Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol,356, 553–565.
  • Viktorin, G., Riebli, N., & Reichert, H. (2013). A multipotent transit-amplifying neuroblast lineage in the central brain gives rise to optic lobe glial cells in Drosophila. Dev Biol, 379, 182–194.
  • Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469, 314–322.
  • Wang, H., Somers, G. W., Bashirullah, A., Heberlein, U., Yu, F., & Chia, W. (2006). Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev, 20, 3453–3463.
  • Wang, Y. C., Yang, J. S., Johnston, R., Ren, Q., Luan, H., Brody, T., Odenwald, W. F., & Lee, T. (2014). Drosophila intermediate neural progenitors produce lineage-dependent related series of diverse neurons. Development, 141, 253–258.
  • Weng, M., Golden, K. L., & Lee, C. Y. (2010). dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev Cell, 18, 126–135.
  • Weng, M., & Lee, C. Y. (2011). Keeping neural progenitor cells on a short leash during Drosophila neurogenesis. Curr Opin Neurobiol, 21, 36–42.
  • Xiao, Q., Komori, H., & Lee, C. Y. (2012). klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development, 139, 2670–2680.
  • Yu, H. H., Awasaki, T., Schroeder, M. D., Long, F., Yang, J. S., He, Y., Ding, P., Kao, J. C., Wu, G. Y., Peng, H., Myers, G., & Lee, T. (2013). Clonal development and organization of the adult Drosophila central brain. Curr Biol, 23, 633–643.
  • Zacharioudaki, E., Magadi, S. S., & Delidakis, C. (2012). bHLH-O proteins are crucial for Drosophila neuroblast self-renewal and mediate Notch-induced overproliferation. Development, 139, 1258–1269.
  • Zhu, S., Barshow, S., Wildonger, J., Jan, L. Y., & Jan, Y. N. (2011). Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc Natl Acad Sci U S A, 108, 20615–20620.
  • Zhu, S., Wildonger, J., Barshow, S., Younger, S., Huang, Y., & Lee, T. (2012). The bHLH repressor Deadpan regulates the self-renewal and specification of Drosophila larval neural stem cells independently of Notch. PLoS ONE, 7:e46724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.