269
Views
8
CrossRef citations to date
0
Altmetric
Original Research Article

Differences in Neural Circuitry Guiding Behavioral Responses to Polarized light Presented to Either the Dorsal or Ventral Retina in Drosophila

, , &
Pages 348-360 | Received 31 Dec 2013, Accepted 06 May 2014, Published online: 08 Jul 2014

References

  • Bernard, G. D., & Wehner, R. (1977). Functional similarities between polarization vision and color vision. Vision Res, 17, 1019–1028.
  • Chiou, T. H., Kleinlogel, S., Cronin, T., Caldwell, R., Loeffler, B., Siddiqi, A. et al. (2008). Circular polarization vision in a stomatopod crustacean. Curr Biol, 18, 429–434.
  • Dacke, M., Doan, T. A., & O’Carroll, D. C. (2001). Polarized light detection in spiders. J Exp Biol, 204, 2481–2490.
  • Dacke, M., Byrne, M. J., Scholtz, C. H., & Warrant, E. J. (2004). Lunar orientation in a beetle. Proc Biol Sci, 271, 361–365.
  • de Vries, S. E., & Clandinin, T. R. (2012). Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol, 22, 353–362.
  • el Jundi, B., & Homberg, U.. (2010). Evidence for the possible existence of a second polarization-vision pathway in the locust brain. J Insect Physiol, 56, 971–979.
  • el Jundi, B., Pfeiffer, K., & Homberg, U. (2011). A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS One, 6, e27855.
  • el Jundi, B., & Homberg, U. (2012). Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts. J Neurophysiol, 108, 1695–1710.
  • Egri, Á., Blahó, M., Sándor, A., Kriska, G., Gyurkovszky, M., Farkas, R., & Horváth, G. (2012). New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften, 99, 407–416.
  • Fischbach, K. F, & Dittrich A. P. M. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res, 258, 441–475.
  • Fortini, M., & Rubin, G. M. (1991). The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster. Cell Tissue Res, 265, 185–191.
  • Gao, S., Takemura, S. Y., Ting, C. Y., Huang, S., Lu, Z., Luan, H. et al. (2008). The neural substrate of spectral preference in Drosophila. Neuron, 60, 328–342.
  • Gohl, D. M., Silies, M. A., Gao, X. J., Bhalerao, S., Luongo, F. J., Lin, C. C., et al. (2011). A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods, 8, 231–237.
  • Guo, A. (1981). Elektrophysiologische Untersuchungen zur Spektral- und Polarisationsempfindlichkeit der Sehzellen von Calliphora erythrocephala III. Sci. Sin, 24, 272–286.
  • Hardie, R. C. (1984). Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J. Comp. Physiol A, 154, 157–165.
  • Heinze, S., & Homberg, U. (2007). Maplike representation of celestial e-vector orientations in the brain of an insect. Science, 327, 385–398.
  • Heinze, S., & Reppert, S. M. (2011). Sun compass integration of skylight cues in migratory monarch butterflies. Neuron, 69, 345–358.
  • Henze, M. J., & Labhart, T. (2007). Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions. J Exp Biol, 210, 3266–3276.
  • Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., & el Jundi, B. (2011). Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B Biol Sci, 366, 680–687.
  • Hong, S. T., Bang, S., Paik, D., Kang, J., Hwang, S., Jeon, K., et al. (2006). Histamine and its receptors modulate temperature-preference behaviors in Drosophila. J Neurosci, 26, 7245–7256.
  • Kamermans, M., & Hawryshyn, C. (2011). Teleost polarization vision: how it might work and what it might be good for. Philos Trans R Soc Lond B Biol Sci, 366, 742–756.
  • Karuppudurai, T., Lin, T. Y., Ting, C. Y., Pursley, R., Melnattur, K. V., Diao, F., et al. (2014). A Hard-Wired Glutamatergic Circuit Pools and Relays UV Signals to Mediate Spectral Preference in Drosophila. Neuron, 81, 603–615.
  • Katsov, A. Y., & Clandinin, T. R. (2008). Motion processing streams are behaviorally specialized. Neuron, 59, 322–335.
  • Kelber, A. (1999). Why ‘false’ colours are seen by butterflies. Nature, 402, 251.
  • Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol, 47, 81–92.
  • Kraft, P., Evangelista, C., Dacke, M., Labhart, T., & Srinivasan, M.V. (2011). Honeybee navigation: following routes using polarized-light cues. Philos Trans R Soc Lond B Biol Sci, 366, 703–708.
  • Labhart, T. (1980)Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol, 141, 19–30.
  • Labhart, T, Hodel, B., & Valenzuela, I. (1984). The physiology of the cricket's compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A, 155, 289–296.
  • Labhart, T. (1986). The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A, 158, 1–7.
  • Labhart, T., & Meyer, E. P. (1999). Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech, 47, 368–379.
  • Labhart, T. (1988). Polarization-opponent interneurons in the insect visual system. Nature, 331, 435–437.
  • Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., et al. (2006). Distinct memory traces for two visual features in the Drosophila brain. Nature, 439, 551–556.
  • Maisak, M. S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., et al. (2013). A directional tuning map of Drosophila elementary motion detectors. Nature, 500, 212–216.
  • Mappes, M., & Homberg, U. (2007). Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 193, 43–50.
  • Mäthger, L. M., Shashar, N., & Hanlon, R.T. (2009). Do cephalopods communicate using polarized light reflections from their skin? J Exp Biol, 212, 2133–2140.
  • Mast, J. D., Prakash, S., Chen, P. L., & Clandinin, T. R. (2006). The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila. Semin Cell Dev Biol, 17, 42–49.
  • Mauss, A. S., Meier, M., Serbe, E., & Borst, A. (2014). Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J Neurosci, 34, 2254–2263.
  • Meinertzhagen, I. A., & O’Neil, S. D. (1991). Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol, 305, 232–263.
  • Melnattur, K. V., & Lee, C. H. (2011). Visual circuit assembly in Drosophila Dev Neurobiol, 71, 1286–1296.
  • Nilsson, D. E., & Warrant, E. J. (1999). Visual discrimination: Seeing the third quality of light. Curr Biol. 9, R535–R537.
  • Ofstad, T. A., Zuker, C. S., & Reiser, M. B. (2011). Visual place learning in Drosophila melanogaster. Nature, 474, 204–207.
  • Pantazis, A., Segaran, A., Liu, C. H., Nikolaev, A., Rister, J., Thum, A. S., et al. (2008). Distinct roles for two histamine receptors (hclA and hclB) at the Drosophila photoreceptor synapse. J Neurosci, 28, 7250–7259.
  • Paulk, A., Millard, S. S., & van Swinderen, B. (2013). Vision in Drosophila: seeing the world through a model's eyes. Annu Rev Entomol, 58, 313–332.
  • Petrovic, M., – Hummel, T.. (2008). Temporal identity in axonal target layer recognition. Nature, 456, 800–803.
  • Pfeiffer, K., Kinoshita, M., & Homberg, U. (2005). Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J Neurophysiol, 94, 3903–3915.
  • Pfeiffer, B. D., Jenett, A., Hammonds, A. S., Ngo, T. T., Misra, S., Murphy, C., et al. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A, 105, 9715–9720.
  • Reppert, S. M., Zhu, H., & White, R. H. (2004). Polarized light helps monarch butterflies navigate. Curr Biol, 14, 155–158.
  • Rister, J., Pauls, D., Schnell, B., Ting, CY., Lee, CH., Sinakevitch, I., et al. (2007)Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron, 56, 155–170.
  • Rossel, S. (1993). Navigation by bees using polarized skylight. Comp. Biochem. Physiol. 104A, 695–708.
  • Sakura, M., Lambrinos, D., & Labhart, T. (2008). Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. J Neurophysiol99, 667–682.
  • Schnaitmann, C., Garbers, C., Wachtler, T., & Tanimoto, H. (2013). Color discrimination with broadband photoreceptors. Curr Biol, 23, 2375–2382.
  • Schwind, R. (1983a). A Polarization-Sensitive Response of the Flying Water Bug Notonecta glauca to UV Light. J Comp Physiol, 150, 87–91.
  • Schwind, R. (1983b). Zonation of the optical environment and zonation of the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res, 232, 53–63.
  • Schwind, R. (1999). Daphnia pulex swims towards the most strongly polarized light - a response that leads to ‘shore flight’. J Exp Biol, 202, 3631–3635.
  • Shashar, N., Sabbah, S., & Aharoni, N. (2005). Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol Letters, 4, 472–475.
  • Silies, M., Gohl, D. M., Fisher, Y. E., Freifeld, L., Clark, D. A., & Clandinin, T. R. (2013). Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron, 79, 111–127.
  • Stalleicken, J., Labhart, T., & Mouritsen, H. (2006).Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J Comp Physiol A, 192, 321–331.
  • Stuart, A. E. (1999). From fruit flies to barnacles, histamine is the neurotransmitter of arthropod photoreceptors. Neuron, 22, 431–433. Review.
  • Takemura, S. Y., Lu, Z., & Meinertzhagen, I. A. (2008). Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol, 509, 493–513.
  • Takemura S. Y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P. K., et al. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature. 500, 175–181.
  • Theobald, J. C., Shoemaker, P. A., Ringach, D. L., & Frye, M. A. (2010). Theta motion processing in fruit flies. Front Behav Neurosci, 4, pii: 35.
  • Ting, C. Y., McQueen, P. G., Pandya, N., Lin, T. Y., Yang, M., Reddy, O. V., et al. (2014). Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron, 81:830–846.
  • Tomlinson, A., & Ready, D. F. (1986). Sevenless: a cell-specific homeotic mutation of the Drosophila eye. Science, 231, 400–402.
  • Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M., & Reiser, M. B. (2013). Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron, 79, 128–140.
  • Von Frisch, K. (1949). Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia, 5, 142–148.
  • Wada, S. (1974). Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morph Tiere, 77, 87–125.
  • Wardill, T. J., List, O., Li, X., Dongre, S., McCulloch, M., Ting, C. Y., et al. (2012). Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science, 336, 925–931.
  • Wehner, R. (2001). Polarization vision – a uniform sensory capacity? J Exp Biol, 204, 2589–2596.
  • Wehner, R. (2003). Desert ant navigation: how minibrains solve complex tasks. J Comp Physiol A, 189, 579–588.
  • Wehner, R., & Labhart, T. (2006). Polarization vision. In: Warrant, E.J., Nilsson, D.-E. (eds) Invertebrate vision. Cambridge.
  • Wernet, M. F., Labhart, T., Baumann, F., Mazzoni, E. O., Pichaud, F., & Desplan, C. (2003). Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell, 115, 267–279.
  • Wernet, M. F., & Desplan, C. (2004). Building a retinal mosaic: cell fate decisions in the fly eye. Trends Cell Biol, 14, 576–584.
  • Wernet, M. F., Velez, M. M., Clark, D. A., Baumann-Klausener, F., Brown, J. R., Klovstad, M., et al. (2012). Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol, 22, 12–20.
  • Weir, P. T., & Dickinson, M. H. (2012). Flying Drosophila orient to sky polarization. Curr Biol, 22, 21–27.
  • Wildermuth, H. (1998). Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioral field test. Naturwissenschaften, 85, 297–302.
  • Wiltschko, W., & Wiltschko, R. (2012). Global navigation in migratory birds: tracks, strategies, and interactions between mechanisms. Curr Opin Neurobiol, 22, 328–335.
  • Wolf, R., Gebhardt, B., Gademann, R., & Heisenberg, M. (1980). Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol, 139, 177–191.
  • Wunderer, H., & Smola, U. (1982). Fine structure of ommatidia at the dorsal eye margin of Calliphora Erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialized for the detection of polarized light. Int J Insect Morphol & Embryol, 11, 25–38.
  • Yamaguchi, S., Desplan, C., & Heisenberg, M. (2010). Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci U S A, 107, 5634–5639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.