2,436
Views
23
CrossRef citations to date
0
Altmetric
Review Article

The Evolution and Development of Neural Superposition

, , , , &
Pages 216-232 | Received 25 Jan 2014, Accepted 05 May 2014, Published online: 08 Jul 2014

References

  • Baker, N. E. (2007). Patterning signals and proliferation in Drosophila imaginal discs. Curr Opin Genet Dev, 17, 287–293.
  • Bazigou, E., Apitz, H., Johansson, J., Loren, C. E., Hirst, E. M., Chen, P. L., et al. (2007). Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 128, 961–975.
  • Braitenberg, V. (1967). Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res, 3, 271–298.
  • Braitenberg, V. (1970). Ordnung und Orientierung im Sehseystem der Fliege. Kybernetik, 7, 235–242.
  • Cajal, S. R. (1909). Nota sobre la structural de la retina de la Mosca. Trab Lab Invest Biol Univ Madr, 7, 217–227.
  • Cajal, S. R., & Sanchez, D. (1915). Contribucion al conocimiento de los centros nerviosos de los insectos. Parte 1. retina y centros opticos. Trab Lab Invest Biol Univ Madr, 13, 1–168.
  • Carthew, R. W. (2007). Pattern formation in the Drosophila eye. Curr Opin Genet Dev, 17, 309–313.
  • Chan, C. C., Epstein, D., & Hiesinger, P. R. (2011). Intracellular trafficking in Drosophila visual system development: a basis for pattern formation through simple mechanisms. Dev Neurobiol, 71, 1227–1245.
  • Chen, P. L., & Clandinin, T. R. (2008). The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila. Neuron, 58, 26–33.
  • Chen, Q., Wei, Y., & Hua, B. (2012). Ultrastructural comparison of the compound eyes of Sinopanorpa and Panorpa (Mecoptera: Panorpidae). Micron, 43, 893–901.
  • Clandinin, T. R., Lee, C. H., Herman, T., Lee, R. C., Yang, A. Y., Ovasapyan, S., & Zipursky, S. L. (2001). Drosophila LAR regulates R1–R6 and R7 target specificity in the visual system. Neuron, 32, 237–248.
  • Clandinin, T. R., & Zipursky, S. L. (2000). Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron, 28, 427–436.
  • Clandinin, T. R., & Zipursky, S. L. (2002). Making connections in the fly visual system. Neuron, 35, 827–841.
  • Dietrich, W. (1909). Die Facettenaugen der Dipteren. Z Wiss Zool, 92, 465–539.
  • Eaton, S. (1997). Planar polarization of Drosophila and vertebrate epithelia. Curr Opin Cell Biol, 9, 860–866.
  • Edwards, T. N., & Meinertzhagen, I. A. (2009). Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila. J Neurosci, 29, 828–841.
  • Fischbach, K. F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell tissue res, 258, 441–475.
  • Fischbach, K. F., & Hiesinger, P. R. (2008). Optic lobe development. Adv Exp Med Biol, 628, 115–136.
  • Frohlich, A., & Meinertzhagen, I. A. (1987). Regulation of synaptic frequency: comparison of the effects of hypoinnervation with those of hyperinnervation in the fly’s compound eye. J neurobiol, 18, 343–357.
  • Gao, S., Takemura, S. Y., Ting, C. Y., Huang, S., Lu, Z., Luan, H., et al. (2008). The neural substrate of spectral preference in Drosophila. Neuron, 60, 328–342.
  • Garrity, P. A., Lee, C. H., Salecker, I., Robertson, H. C., Desai, C. J., Zinn, K., & Zipursky, S. L. (1999). Retinal axon target selection in Drosophila is regulated by a receptor protein tyrosine phosphatase. Neuron, 22, 707–717.
  • Greiner, B. (2006). Adaptations for nocturnal vision in insect apposition eyes. Int Rev Cytol, 250, 1–46.
  • Greiner, B., Ribi, W. A., & Warrant, E. J. (2005). A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis. Cell Tissue Res, 322, 313–320.
  • Greiner, B., Ribi, W. A., Wcislo, W. T., & Warrant, E. J. (2004). Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res, 318, 429–437.
  • Hadjieconomou, D., Timofeev, K., & Salecker, I. (2011). A step-by-step guide to visual circuit assembly in Drosophila. Curr Opin Neurobiol, 21, 76–84.
  • Hardie, R. C. (1985). Functional Organization of the Fly Retina. In Progress in Sensory Physiology, H. Autrum, D. Ottoson, E. Perl, R. Schmidt, H. Shimazu, & W. Willis (Eds), (pp. 1–79). New York: Springer Berlin Heidelberg.
  • Hennig, W. (1973). Diptera (Zweifluegler). Handbuch der Zoologie, Vol 4(2), Berlin: Walter de Gruyter.
  • Hiesinger, P. R., Zhai, R. G., Zhou, Y., Koh, T. W., Mehta, S. Q., Schulze, K. L., et al. (2006). Activity-independent prespecification of synaptic partners in the visual map of Drosophila. Curr Biol, 16, 1835–1843.
  • Horridge, A. (2005). The spatial resolutions of the apposition compound eye and its neuro-sensory feature detectors: observation versus theory. J Insect Physiol, 51, 243–266.
  • Horridge, G. A., Duniec, J., & Marcelja, L. (1981). A 24-hour cycle in single locust and manti photoreceptors. J Exp Biol, 91, 307–322.
  • Horridge, G. A., & Meinertzhagen, I. A. (1970a). The accuracy of the patterns of connexions of the first- and second-order neurons of the visual system of Calliphora. Proc R Soc Lond B Biol Sci, 175, 69–82.
  • Horridge, G. A., & Meinertzhagen, I. A. (1970b). The exact projection of the visual fields upon the first and second ganglia of the insect eye. Z Vergl Physiol, 66, 369–378.
  • Huang, Z., & Kunes, S. (1996). Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell, 86, 411–422.
  • Ioannides, A. C., & Horridge, G. A. (1975). The organization of visual fields in the hemipteran acone eye. Proc R Soc Lond B Biol Sci, 190, 373–391.
  • Kaminker, J. S., Canon, J., Salecker, I., & Banerjee, U. (2002). Control of photoreceptor axon target choice by transcriptional repression of Runt. Nat Neurosci, 5, 746–750.
  • Kirschfeld, K. (1967). [The projection of the optical environment on the screen of the rhabdomere in the compound eye of the Musca]. Exp Brain Res, 3, 248–270.
  • Kirschfeld, K., & Franceschini, N. (1968). [Optical characteristics of ommatidia in the complex eye of Musca]. Kybernetik, 5, 47–52.
  • Kristensen, N. P. (1981). Phylogeny of insect orders. Ann Rev Entomol, 26, 135–157.
  • Land, M. F. (1997). Visual acuity in insects. Annu Rev Entomol, 42, 147–177.
  • Land, M. F. (2005). The optical structures of animal eyes. Curr Biol, 15, R319–R323.
  • Land, M. F., Gibson, G., & Horwood, J. (1997). Mosquito eye design: conical rhabdoms are matched to wide aperture lenses. Proc Biol Sci, 264, 1183–1187.
  • Land, M. F., Gibson, G., Horwood, J., & Zeil, J. (1999). Fundamental differences in the optical structure of the eyes of nocturnal and diurnal mosquitoes. J Comp Physiol A, 185, 91–103.
  • Land, M. F., & Horwood, J. (2005). Different retina-lamina projections in mosquitoes with fused and open rhabdoms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 191, 639–647.
  • Land, M. F., & Nilsson, D. E. (2002). Animal Eyes (Oxford, UK: Oxford University Press).
  • Lee, C. H., Herman, T., Clandinin, T. R., Lee, R., & Zipursky, S. L. (2001). N-cadherin regulates target specificity in the Drosophila visual system. Neuron, 30, 437–450.
  • Lee, R. C., Clandinin, T. R., Lee, C. H., Chen, P. L., Meinertzhagen, I. A., & Zipursky, S. L. (2003). The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nat Neurosci, 6, 557–563.
  • Martin, K. A., Poeck, B., Roth, H., Ebens, A. J., Ballard, L. C., & Zipursky, S. L. (1995). Mutations disrupting neuronal connectivity in the Drosophila visual system. Neuron, 14, 229–240.
  • Mast, J. D., Prakash, S., Chen, P. L., & Clandinin, T. R. (2006). The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila. Semin Cell Dev Biol, 17, 42–49.
  • Maurel-Zaffran, C., Suzuki, T., Gahmon, G., Treisman, J. E., & Dickson, B. J. (2001). Cell-autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron, 32, 225–235.
  • Meinertzhagen, I. A. (1972). Erroneous projection of retinula axons beneath a dislocation in the retinal equator of Calliphora. Brain Res, 41, 39–49.
  • Meinertzhagen, I. A. (1976). The organization of perpendicular fibre pathways in the insect optic lobe. Philos Trans R Soc Lond B Biol Sci, 274, 555–594.
  • Meinertzhagen, I. A. (1991). Evolution of the cellular organization of the compound eye and optic lobe. In Vision and visual dysfunction, J.R. Cronly-Dillon, and R.L. Gregory, eds. (London: Macmillan Press), pp. 341–363.
  • Meinertzhagen, I. A., & Hanson, T. (1993). >The development of the optic lobe.
  • Meinertzhagen, I. A., & Hu, X. (1996). Evidence for site selection during synaptogenesis: the surface distribution of synaptic sites in photoreceptor terminals of the files Musca and Drosophila. Cell Mol Neurobiol, 16, 677–698.
  • Meinertzhagen, I. A., & O’Neil, S. D. (1991). Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol, 305, 232–263.
  • Meinertzhagen, I. A., Piper, S. T., Sun, X. J., & Frohlich, A. (2000). Neurite morphogenesis of identified visual interneurons and its relationship to photoreceptor synaptogenesis in the flies, Musca domestica and Drosophila melanogaster. Eur J Neurosci, 12, 1342–1356.
  • Meinertzhagen, I. A., & Sorra, K. E. (2001). Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog Brain Res, 131, 53–69.
  • Melzer, R. R. (1994). Optic lobes of the larval and imaginal scorpionfly Panorpa vulgaris (Mecoptera, Panorpidae): A neuroanatomical study of neuropil organization, retinula axons, and lamina monopolar cells. Cell Tissue Res, 275, 283–290.
  • Melzer, R. R., & Paulus, H. F. (1993). Neuroanatomische Studien an Mucken (Diptera, Nematocera): ein Beitrag zur vergleichenden Analyse neuronaler Strukturen. Verh Dtsch Zool Ges, 86, 221.
  • Melzer, R. R., Zimmermann, T., & Smola, U. (1997). Modification of dispersal patterns of branched photoreceptor axons and the evolution of neural superposition. Cell Mol Life Sci, 53, 242–247.
  • Meyer, R. L. (1998). Roger Sperry and his chemoaffinity hypothesis. Neuropsychologia, 36, 957–980.
  • Morante, J., & Desplan, C. (2004). Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Seminars in cell & developmental biology 15, 137–143.
  • Moses, K. (2006). Evolutionary biology: fly eyes get the whole picture. Nature, 443, 638–639.
  • Nilsson, D. E. (1989). Optics and evolution of the compound eye. In Facets of vision, D.G. Stavenga, and R.C. Hardie, eds. (Berlin: Springer), pp. 30–73.
  • Nilsson, D. E., & Ro, A.-I. (1994). Did neuronal pooling for night vision lead to the evolution of neural superposition eyes? J Comp Physiol A, 175, 289–302.
  • Osorio, D. (2007). Spam and the evolution of the fly's eye. BioEssays, 29, 111–115.
  • Picaud, S., Wunderer, H., & Franceschini, N. (1990). Dye-induced photopermeabilization and photodegeneration: a lesion technique useful for neuronal tracing. J Neurosci Methods, 33, 101–112.
  • Poeck, B., Fischer, S., Gunning, D., Zipursky, S. L., & Salecker, I. (2001). Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron, 29, 99–113.
  • Prakash, S., Caldwell, J. C., Eberl, D. F., & Clandinin, T. R. (2005). Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat Neurosci, 8, 443–450.
  • Prakash, S., McLendon, H. M., Dubreuil, C. I., Ghose, A., Hwa, J., Dennehy, K. A., et al. (2009). Complex interactions amongst N-cadherin, DLAR, and Liprin-alpha regulate Drosophila photoreceptor axon targeting. Dev Biol, 336, 10–19.
  • Rao, Y., Pang, P., Ruan, W., Gunning, D., & Zipursky, S. L. (2000). Brakeless is required for photoreceptor growth-cone targeting in Drosophila. Proc Natl Acad Sci U S A, 97, 5966–5971.
  • Ready, D. F., Hanson, T. E., & Benzer, S. (1976). Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol, 53, 217–240.
  • Rivera-Alba, M., Vitaladevuni, S. N., Mishchenko, Y., Lu, Z., Takemura, S. Y., Scheffer, L., et al. (2011). Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr Biol, 21, 2000–2005.
  • Roignant, J. Y., & Treisman, J. E. (2009). Pattern formation in the Drosophila eye disc. Int J Dev Biol, 53, 795–804.
  • Rybak, J., & Meinertzhagen, I. A. (1997). The effects of light reversals on photoreceptor synaptogenesis in the fly Musca domestica. Eur J Neurosci, 9, 319–333.
  • Schwabe, T., Neuert, H., & Clandinin, T. R. (2013). A network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity. Cell, 154, 351–364.
  • Schweisguth, F. (2005). Temporal regulation of planar cell polarity: insights from the Drosophila eye. Cell, 121, 497–499.
  • Seifert, P., & Smola, U. (1990). Adaptive structural changes indicate an evolutionary progression towards the open rhabdom in diptera. J Evol Biol, 3, 225–242.
  • Senti, K., Keleman, K., Eisenhaber, F., & Dickson, B. J. (2000). Brakeless is required for lamina targeting of R1–R6 axons in the Drosophila visual system. Development, 127, 2291–2301.
  • Senti, K. A., Usui, T., Boucke, K., Greber, U., Uemura, T., & Dickson, B. J. (2003). Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Curr Biol, 13, 828–832.
  • Shaw, S. R. (1969). Optics of arthropod compound eye. Science, 165, 88–90.
  • Shaw, S. R. (1989). The retina-lamina pathway in insects, particularly Diptera, viewed from an evolutionary perspective. In Facets of vision, D.G. Stavenga, and R.C. Hardie, eds. (Berlin: Springer), pp. 186–212.
  • Shaw, S. R. (1990). The photoreceptor axon projection and its evolution in the neural superposition eyes of some primitive brachyceran diptera. Brain Behav Evol, 35, 107–125.
  • Shaw, S. R., & Meinertzhagen, I. A. (1986). Evolutionary progression at synaptic connections made by identified homologous neurones. Proc Natl Acad Sci U S A, 83, 7961–7965.
  • Shaw, S. R., & Moore, D. (1989). Evolutionary remodeling in a visual system through extensive changes in the synaptic connectivity of homologous neurons. Vis Neurosci, 3, 405–410.
  • Sperry, R. W. (1963). Chemoaffinity in the Orderly Growth of Nerve Fiber Patterns and Connections. Proc Natl Acad Sci U S A, 50, 703–710.
  • Stavenga, D. G. (1975). The Neural Superposition Eye and Its Optical Demands. J Comp Physiol, 102, 297–304.
  • Strausfeld, N. J. (1976). Atlas of an insect brain. In (Berlin: Springer Verlag).
  • Tanaka, G., Parker, A. R., Siveter, D. J., Maeda, H., & Furutani, M. (2009). An exceptionally well-preserved Eocene dolichopodid fly eye: function and evolutionary significance. Proc Biol Sci, 276, 1015–1019.
  • Tayler, T. D., & Garrity, P. A. (2003). Axon targeting in the Drosophila visual system. Curr Opin Neurobiol, 13, 90–95.
  • Ting, C. Y., & Lee, C. H. (2007). Visual circuit development in Drosophila. Curr Opin Neurobiol, 17, 65–72.
  • Tomlinson, A., & Ready, D. F. (1987). Neuronal differentiation in Drosophila ommatidium. Dev Biol, 120, 366–376.
  • Trujillo-Cenoz, O., & Melamed, J. (1966). Compound eye of dipterans: anatomical basis for integration–an electron microscope study. J Ultrastruct Res, 16, 395–398.
  • Trujillo-Cenoz, O., & Melamed, J. (1973). The development of the retina-lamina complex in muscoid flies. J Ultrastruct Res, 42, 554–581.
  • Tsachaki, M., & Sprecher, S. G. (2012). Genetic and developmental mechanisms underlying the formation of the Drosophila compound eye. Dev Dyn, 241, 40–56.
  • Tuurala, O. (1963). Bau und photomechanische Erscheinungen im Auge einiger Chironomiden (Dipt.). Ann Entomol Fenn, 29, 209–217.
  • Vigier, P. (1907a). Mecanisme de la synthese des impressions rescueillies par les yeux composes des Dipteres. C R Acad Sci (Paris), 63, 122–124.
  • Vigier, P. (1907b). Sur la reception de l’exitant lumineux dans le yeux composes des Insectes, en prticulier chez les Muscides. C R Acad Sci (Paris), 63, 633–636.
  • Vigier, P. (1907c). Sur les terminations photoreceptrices dans les yeux composes des Muscides. C R Acad Sci (Paris), 63, 532–536.
  • Vigier, P. (1908). Sur l'existence reele et le role des appendices piriformes des neurons. Le neurons perioptique des Dipteres. CR Soc Biol (Paris), 64, 959–961.
  • Wardill, T. J., List, O., Li, X., Dongre, S., McCulloch, M., Ting, C. Y., et al. (2012). Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science, 336, 925–931.
  • Warrant, E. J. (1999). Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res, 39, 1611–1630.
  • Wiegmann, B. M., Trautwein, M. D., Winkler, I. S., Barr, N. B., Kim, J. W., Lambkin, C., et al. (2011). Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A, 108, 5690–5695.
  • Williams, D. S. (1982). Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res, 225, 595–617.
  • Wolburg-Buchholz, K. (1979). The organization of the lamina ganglionaris of the hemipteran insects, Notonecta glauca, Corixa punctata and Gerris lacustris. Cell Tissue Res, 197, 39–59.
  • Wolff, T., & Ready, D. F. (1991). The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development, 113, 841–850.
  • Wolff, T., & Ready, D. F. (1993). Pattern formation in the Drosophila retina. In The Development of Drosophila melanogaster (Cold Spring Harbor Laboratory: Cold Spring Harbor Laboratory Press), pp. 1277–1325.
  • Yamaguchi, S., Wolf, R., Desplan, C., & Heisenberg, M. (2008). Motion vision is independent of color in Drosophila. Proc Natl Acad Sci U S A, 105, 4910–4915.
  • Zeil, J. (1979). A new kind of superposition eyee: the compound eye of male Bibionidae. Nature, 278, 249–250.
  • Zeil, J. (1983). Sexual dimorphism in the visual system of flies: the divided brain of male Bibionidae (Diptera). Cell Tissue Res, 229, 591–610.
  • Zelhof, A. C., Hardy, R. W., Becker, A., and Zuker, C. S. (2006). Transforming the architecture of compound eyes. Nature, 443, 696–699.