5,062
Views
43
CrossRef citations to date
0
Altmetric
Review Article

A Challenge of Numbers and Diversity: Neurogenesis in the Drosophila Optic Lobe

&
Pages 233-249 | Received 28 Feb 2014, Accepted 06 May 2014, Published online: 08 Jul 2014

REFERENCES

  • Bayraktar, O. A., & Doe, C. Q. (2013). Combinatorial temporal patterning in progenitors expands neural diversity. Nature, 498, 449–455.
  • Bazigou, E., Apitz, H., Johansson, J., Loren, C. E., Hirst, E. M., Chen, P. L., et al. (2007). Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell, 128, 961–975.
  • Bello, B. C., Izergina, N., Caussinus, E., & Reichert, H. (2008). Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev, 3, 5.
  • Bier, E., Vaessin, H., Younger-Shepherd, S., Jan, L. Y., & Jan, Y. N. (1992). deadpan, an essential pan-neural gene in Drosophila, encodes a helix-loop-helix protein similar to the hairy gene product. Genes Dev, 6, 2137–2151.
  • Boone, J. Q., & Doe, C. Q. (2008). Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol, 68, 1185–1195.
  • Bowman, S. K., Rolland, V., Betschinger, J., Kinsey, K. A., Emery, G., & Knoblich, J. A. (2008). The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell, 14, 535–546.
  • Braitenberg, V. (1967). Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res, 3, 271–298.
  • Brand, A. H., & Livesey, F. J. (2011). Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron, 70, 719–729.
  • Brand, M., Jarman, A. P., Jan, L. Y., & Jan, Y. N. (1993). asense is a Drosophila neural precursor gene and is capable of initiating sense organ formation. Development, 119, 1–17.
  • Breunig, J. J., Haydar, T. F., & Rakic, P. (2011). Neural stem cells: historical perspective and future prospects. Neuron, 70, 614–625.
  • Britton, J. S., & Edgar, B. A. (1998). Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development, 125, 2149–2158.
  • Brody, T., & Odenwald, W. F. (2000). Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev Biol, 226, 34–44.
  • Cabrera, C. V., Martinez-Arias, A., & Bate, M. (1987). The expression of three members of the achaete-scute gene complex correlates with neuroblast segregation in Drosophila. Cell, 50, 425–433.
  • Campos-Ortega, J. A. (1993). Early neurogenesis in Drosophila melanogaster. In M. Bate & A. Martinez Arias (Eds.), The development of Drosophila melanogaster (Vol. II, pp. 1091–1129): Cold Spring Harbor Laboratory Press.
  • Cheyette, B. N., Green, P. J., Martin, K., Garren, H., Hartenstein, V., & Zipursky, S. L. (1994). The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron, 12, 977–996.
  • Choksi, S. P., Southall, T. D., Bossing, T., Edoff, K., de Wit, E., Fischer, B. E., et al. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell, 11, 775–789.
  • Chotard, C., Leung, W., & Salecker, I. (2005). glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron, 48, 237–251.
  • Chu, T., Chiu, M., Zhang, E., & Kunes, S. (2006). A C-terminal motif targets Hedgehog to axons, coordinating assembly of the Drosophila eye and brain. Dev Cell, 10, 635–646.
  • Clandinin, T. R., & Feldheim, D. A. (2009). Making a visual map: mechanisms and molecules. Curr Opin Neurobiol, 19, 174–180.
  • Clandinin, T. R., & Zipursky, S. L. (2000). Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron, 28, 427–436.
  • Colonques, J., Ceron, J., Reichert, H., & Tejedor, F. J. (2011). A transient expression of Prospero promotes cell cycle exit of Drosophila postembryonic neurons through the regulation of Dacapo. PLoS One, 6, e19342.
  • Datta, S. (1995). Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system. Development, 121, 1173–1182.
  • Datta, S. (1999). Activation of neuroblast proliferation in explant culture of the Drosophila larval CNS. Brain Res, 818, 77–83.
  • Dearborn, R., Jr., & Kunes, S. (2004). An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development, 131, 2291–2303.
  • Doe, C. Q., Chu-LaGraff, Q., Wright, D. M., & Scott, M. P. (1991). The prospero gene specifies cell fates in the Drosophila central nervous system. Cell, 65, 451–464.
  • Ebens, A. J., Garren, H., Cheyette, B. N., & Zipursky, S. L. (1993). The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell, 74, 15–27.
  • Egger, B., Boone, J. Q., Stevens, N. R., Brand, A. H., & Doe, C. Q. (2007). Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev, 2, 1.
  • Egger, B., Gold, K. S., & Brand, A. H. (2010). Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development, 137, 2981–2987.
  • Egger, B., Gold, K. S., & Brand, A. H. (2011). Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly (Austin), 5, 237–241.
  • Erclik, T., Hartenstein, V., Lipshitz, H. D., & McInnes, R. R. (2008). Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Curr Biol, 18, 1278–1287.
  • Fernandez-Hernandez, I., Rhiner, C., & Moreno, E. (2013). Adult neurogenesis in Drosophila. Cell Rep, 3, 1857–1865.
  • Fischbach, K. F. (1983). Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster. Dev Biol, 95, 1–18.
  • Fischbach, K. F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res, 258, 441–475.
  • Fischbach, K. F., Linneweber, G. A., Andlauer, T. F., Hertenstein, A., Bonengel, B., & Chaudhary, K. (2009). The irre cell recognition module (IRM) proteins. J Neurogenet, 23, 48–67.
  • Fischbach, K. F., & Technau, G. (1984). Cell degeneration in the developing optic lobes of the sine oculis and small- optic-lobes mutants of Drosophila melanogaster. Dev Biol, 104, 219–239.
  • Freeman, M. (2008). Rhomboid proteases and their biological functions. Annu Rev Genet, 42, 191–210.
  • Freeman, M. R., & Rowitch, D. H. (2013). Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron, 80, 613–623.
  • Garcia-Bellido, A., & de Celis, J. F. (2009). The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics, 182, 631–639.
  • Green, P., Hartenstein, A. Y., & Hartenstein, V. (1993). The embryonic development of the Drosophila visual system. Cell Tissue Res, 273, 583–598.
  • Hadjieconomou, D., Timofeev, K., & Salecker, I. (2011). A step-by-step guide to visual circuit assembly in Drosophila. Curr Opin Neurobiol, 21, 76–84.
  • Hasegawa, E., Kaido, M., Takayama, R., & Sato, M. (2013). Brain-specific-homeobox is required for the specification of neuronal types in the Drosophila optic lobe. Dev Biol, 377, 90–99.
  • Hasegawa, E., Kitada, Y., Kaido, M., Takayama, R., Awasaki, T., Tabata, T., et al. (2011). Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development, 138, 983–993.
  • Hayden, M. A., Akong, K., & Peifer, M. (2007). Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Dev Biol, 305, 358–376.
  • Hofbauer, A., & Campos-Ortega, J. A. (1990). Proliferation and and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch Dev Biol, 198, 264–274.
  • Homem, C. C., & Knoblich, J. A. (2012). Drosophila neuroblasts: a model for stem cell biology. Development, 139, 4297–4310.
  • Huang, Z., & Kunes, S. (1996). Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell, 86, 411–422.
  • Huang, Z., & Kunes, S. (1998). Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development, 125, 3753–3764.
  • Huang, Z., Shilo, B. Z., & Kunes, S. (1998). A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell, 95, 693–703.
  • Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q., & Matsuzaki, F. (1997). Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature, 390, 625–629.
  • Isshiki, T., Pearson, B., Holbrook, S., & Doe, C. Q. (2001). Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell, 106, 511–521.
  • Ito, K., & Hotta, Y. (1992). Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol, 149, 134–148.
  • Ito, M., Masuda, N., Shinomiya, K., Endo, K., & Ito, K. (2013). Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr Biol, 23, 644–655.
  • Jarman, A. P., Brand, M., Jan, L. Y., & Jan, Y. N. (1993). The regulation and function of the helix-loop-helix gene, asense, in Drosophila neural precursors. Development, 119, 19–29.
  • Joesch, M., Plett, J., Borst, A., & Reiff, D. F. (2008). Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol, 18, 368–374.
  • Kambadur, R., Koizumi, K., Stivers, C., Nagle, J., Poole, S. J., & Odenwald, W. F. (1998). Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev, 12, 246–260.
  • Kanai, M. I., Okabe, M., & Hiromi, Y. (2005). Seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev Cell, 8, 203–213.
  • Kaphingst, K., & Kunes, S. (1994). Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell, 78, 437–448.
  • Kawamori, H., Tai, M., Sato, M., Yasugi, T., & Tabata, T. (2011). Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev Growth Differ, 53, 653–667.
  • Kirschfeld, K. (1967). [The projection of the optical environment on the screen of the rhabdomere in the compound eye of the Musca]. Exp Brain Res, 3, 248–270.
  • Kohwi, M., & Doe, C. Q. (2013). Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci, 14, 823–838.
  • Kohwi, M., Lupton, J. R., Lai, S. L., Miller, M. R., & Doe, C. Q. (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell, 152, 97–108.
  • Kumar, J. P. (2010). Retinal determination the beginning of eye development. Curr Opin Neurobiol, 93, 1–28.
  • Lanet, E., Gould, A. P., & Maurange, C. (2013). Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep, 3, 587–594.
  • Li, X., Chen, Z., & Desplan, C. (2013a). Temporal patterning of neural progenitors in Drosophila. Curr Top Dev Biol, 105, 69–96.
  • Li, X., Erclik, T., Bertet, C., Chen, Z., Voutev, R., Venkatesh, S., et al. (2013b). Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature, 498, 456–462.
  • Li, Y., & Padgett, R. W. (2012). bantam is required for optic lobe development and glial cell proliferation. PLoS One, 7, e32910.
  • Meinertzhagen, I. A., & Hanson, T. E. (1993). The development of the optic lobe. In M. Bate & A. Martinez Arias (Eds.), The development of Drosophila melanogaster (Vol. II, pp. 1363–1491): Cold Spring Harbor Laboratory Press
  • Mettler, U., Vogler, G., & Urban, J. (2006). Timing of identity: spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven-up and Prospero. Development, 133, 429–437.
  • Morante, J., & Desplan, C. (2008). The color-vision circuit in the medulla of Drosophila. Curr Biol, 18, 553–565.
  • Morante, J., Erclik, T., & Desplan, C. (2011). Cell migration in Drosophila optic lobe neurons is controlled by eyeless/Pax6. Development, 138, 687–693.
  • Morante, J., Vallejo, D. M., Desplan, C., & Dominguez, M. (2013). Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition. Dev Cell, 27, 174–187.
  • Naka, H., Nakamura, S., Shimazaki, T., & Okano, H. (2008). Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci, 11, 1014–1023.
  • Nassif, C., Noveen, A., & Hartenstein, V. (2003). Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol, 455, 417–434.
  • Ngo, K. T., Wang, J., Junker, M., Kriz, S., Vo, G., Asem, B., et al. (2010). Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev Biol, 346, 284–295.
  • O’Neill, E. M., Rebay, I., Tjian, R., & Rubin, G. M. (1994). The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell, 78, 137–147.
  • Orihara-Ono, M., Toriya, M., Nakao, K., & Okano, H. (2011). Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev Biol, 351, 163–175.
  • Otsuna, H., & Ito, K. (2006). Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol, 497, 928–958.
  • Park, Y., Fujioka, M., Kobayashi, M., Jaynes, J. B., & Datta, S. (2001). even skipped is required to produce a trans-acting signal for larval neuroblast proliferation that can be mimicked by ecdysone. Development, 128, 1899–1909.
  • Perez, S. E., & Steller, H. (1996). Migration of glial cells into retinal axon target field in Drosophila melanogaster. J Neurobiol, 30, 359–373.
  • Perez-Gomez, R., Slovakova, J., Rives-Quinto, N., Krejci, A., & Carmena, A. (2013). A Serrate-Notch-Canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development. J Cell Sci, 126, 4873–4884.
  • Poeck, B., Fischer, S., Gunning, D., Zipursky, S. L., & Salecker, I. (2001). Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron, 29, 99–113.
  • Power, M. E. (1943). The effect of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster. J Exp Zool, 94, 33–71.
  • Raghu, S. V., & Borst, A. (2011). Candidate glutamatergic neurons in the visual system of Drosophila. PLoS One, 6, e19472.
  • Raghu, S. V., Claussen, J., & Borst, A. (2013). Neurons with GABAergic phenotype in the visual system of Drosophila. J Comp Neurol, 521, 252–265.
  • Raghu, V. S., Reiff, D. F., & Borst, A. (2011). Neurons with cholinergic phenotype in the visual system of Drosophila. J Comp Neurol, 519, 162–176.
  • Ramon y Cajal, S., & Sanchez y Sanchez, D. (1915). Contribucion al conociemento de los centros nerviosos de los insectos. Trabajos del Laboratorio de Investigaciones biológicas de la Universidad de Madrid.
  • Reddy, B. V., Rauskolb, C., & Irvine, K. D. (2010). Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development, 137, 2397–2408.
  • Robinow, S., & White, K. (1991). Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J Neurobiol, 22, 443–461.
  • Rujano, M. A., Sanchez-Pulido, L., Pennetier, C., le Dez, G., & Basto, R. (2013). The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat Cell Biol, 15, 1294–1306.
  • Sanes, J. R., & Zipursky, S. L. (2010). Design principles of insect and vertebrate visual systems. Neuron, 66, 15–36.
  • Selleck, S. B., Gonzalez, C., Glover, D. M., & White, K. (1992). Regulation of the G1-S transition in postembryonic neuronal precursors by axon ingrowth. Nature, 355, 253–255.
  • Selleck, S. B., & Steller, H. (1991). The influence of retinal innervation on neurogenesis in the first optic ganglion of Drosophila. Neuron, 6, 83–99.
  • Song, Y., Chung, S., & Kunes, S. (2000). Combgap relays wingless signal reception to the determination of cortical cell fate in the Drosophila visual system. Mol Cell, 6, 1143–1154.
  • Sousa-Nunes, R., Cheng, L. Y., & Gould, A. P. (2010). Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol, 20, 50–57.
  • Strausfeld, N. J. (2005). The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev, 34, 235–256.
  • Strausfeld, N. J., Sinakevitch, I., & Okamura, J. Y. (2007). Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Dev Neurobiol, 67, 1267–1288.
  • Sugie, A., Umetsu, D., Yasugi, T., Fischbach, K. F., & Tabata, T. (2010). Recognition of pre- and postsynaptic neurons via nephrin/NEPH1 homologs is a basis for the formation of the Drosophila retinotopic map. Development, 137, 3303–3313.
  • Suzuki, T., Kaido, M., Takayama, R., & Sato, M. (2013). A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol, 380, 12–24.
  • Takemura, S. Y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P. K., et al. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature, 500, 175–181.
  • Ting, C. Y., McQueen, P. G., Pandya, N., Lin, T. Y., Yang, M., Reddy, O. V., et al. (2014). Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron, 81, 830–846.
  • Togane, Y., Ayukawa, R., Hara, Y., Akagawa, H., Iwabuchi, K., & Tsujimura, H. (2012). Spatio-temporal pattern of programmed cell death in the developing Drosophila optic lobe. Dev Growth Differ, 54, 503–518.
  • Treisman, J. E. (2013). Retinal differentiation in Drosophila. Wiley Interdiscip Rev Dev Biol, 2, 545–557.
  • Truman, J. W., Schuppe, H., Shepherd, D., & Williams, D. W. (2004). Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila. Development, 131, 5167–5184.
  • Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M., & Reiser, M. B. (2013). Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron, 79, 128–140.
  • Umetsu, D., Murakami, S., Sato, M., & Tabata, T. (2006). The highly ordered assembly of retinal axons and their synaptic partners is regulated by Hedgehog/Single-minded in the Drosophila visual system. Development, 133, 791–800.
  • Urbach, R., & Technau, G. M. (2003). Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development, 130, 3621–3637.
  • Urbach, R., & Technau, G. M. (2004). Neuroblast formation and patterning during early brain development in Drosophila. BioEssays, 26, 739–751.
  • Viallanes, H. (1883). Recherches sur l’histologie des insectes et sur les phenomenes histologiques qui accompagnent le developpment postembryonnaire de ces animaux. Annales des Sciences Naturelles (Zoologie et Biologie Animale), ser 6, 14, 1–348.
  • Voigt, A., Pflanz, R., Schafer, U., & Jackle, H. (2002). Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev Dyn, 224, 403–412.
  • Wallace, K., Liu, T. H., & Vaessin, H. (2000). The pan-neural bHLH proteins DEADPAN and ASENSE regulate mitotic activity and cdk inhibitor dacapo expression in the Drosophila larval optic lobes. Genesis, 26, 77–85.
  • Wang, H., Chen, X., He, T., Zhou, Y., & Luo, H. (2013). Evidence for tissue-specific Jak/STAT target genes in Drosophila optic lobe development. Genetics, 195, 1291–1306.
  • Wang, W., Li, Y., Zhou, L., Yue, H., & Luo, H. (2011a). Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe. Biochem Biophys Res Commun, 410, 714–720.
  • Wang, W., Liu, W., Wang, Y., Zhou, L., Tang, X., & Luo, H. (2011b). Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development. Dev Biol, 350, 414–428.
  • Weng, M., Haenfler, J. M., & Lee, C. Y. (2012). Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia. Dev Neurobiol, 72, 1376–1390.
  • White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K., & Steller, H. (1994). Genetic control of programmed cell death in Drosophila. Science, 264, 677–683.
  • White, K., & Kankel, D. R. (1978). Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. Dev Biol, 65, 296–321.
  • Wolff, T., & Ready, D. F. (1993). Pattern formation in the Drosophila retina. In M. Bate & A. Martinez-Arias (Eds.), The development of Drosophila melanogaster (Vol. II, pp. 1277–1325). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Yamanaka, N., Rewitz, K. F., & O’Connor, M. B. (2013). Ecdysone control of developmental transitions: lessons from Drosophila research. Annu Rev Entomol, 58, 497–516.
  • Yasugi, T., Sugie, A., Umetsu, D., & Tabata, T. (2010). Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development, 137, 3193–3203.
  • Yasugi, T., Umetsu, D., Murakami, S., Sato, M., & Tabata, T. (2008). Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development, 135, 1471–1480.
  • Yogev, S., Schejter, E. D., & Shilo, B. Z. (2010). Polarized secretion of Drosophila EGFR ligand from photoreceptor neurons is controlled by ER localization of the ligand-processing machinery. PLoS Biol, 8, e1000505.
  • Yu, H. H., Awasaki, T., Schroeder, M. D., Long, F., Yang, J. S., He, Y., et al. (2013). Clonal development and organization of the adult Drosophila central brain. Curr Biol, 23, 633–643.
  • Zhao, B., Tumaneng, K., & Guan, K. L. (2011). The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol, 13, 877–883.
  • Zhou, L., & Luo, H. (2013). Replication protein a links cell cycle progression and the onset of neurogenesis in Drosophila optic lobe development. J Neurosci, 33, 2873–2888.
  • Zhu, C. C., Boone, J. Q., Jensen, P. A., Hanna, S., Podemski, L., Locke, J., et al. (2008). Drosophila Activin- and the Activin-like product Dawdle function redundantly to regulate proliferation in the larval brain. Development, 135, 513–521.