1,613
Views
18
CrossRef citations to date
0
Altmetric
Review

Tethering Membrane Fusion: Common and Different Players in Myoblasts and at the Synapse

, , &
Pages 302-315 | Received 28 Dec 2013, Accepted 15 Jun 2014, Published online: 24 Jul 2014

REFERENCES

  • Abmayr, S. M., & Pavlath, G. K. (2012). Myoblast fusion: lessons from flies and mice. Development, 139, 641–656.
  • Artero, R. D., Castanon, I., & Baylies, M. K. (2001). The immunoglobulin-like protein Hibris functions as a dose dependent regulator of myobl ast fusion and is differentially controlled by Ras and Notch signaling. Development, 128, 4251–4264.
  • Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K., & Broadie, K. (1999). Drosophila UNC-13 is essential for synaptic transmission. Nat Neurosci, 2, 965–971.
  • Barlowe, C. (1997). Coupled ER to Golgi transport reconstituted with purified cytosolic components. J. Cell Biol, 139, 1097–1108.
  • Bate, M. (1990). The embryonic-development of larval muscles in Drosophila. Development, 110, 791–804.
  • Bao, H., Berlanga, M. L., Xue, M., Hapip, S. M., Daniels, R. W., Mendenhall, J. M., et al. (2007). The atypical cadherin flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila. Mol Cell Neurosci, 34, 662–678.
  • Beckett, K., & Baylies, M. K. (2007). 3D analysis of founder cell and fusion competent myoblast arrangements outlines a new model of myoblast fusion. Dev Biol, 309, 113–125.
  • Berger, S., Schäfer, G., Kesper, D. A., Holz, A., Eriksson, T., Palmer, R. H., et al. (2008). WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. J Cell Sci, 121, 1303–1313.
  • Blond, J. L., Lavillette, D., Cheynet, V., Bouton, O., Oriol, G., Chapel-Fernandes, S., et al. (2000). An envelope glycoprotein of the human endogenous HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol, 74, 3321–3329.
  • Bonn, B. R., Rudolf, A., Hornbruch-Freitag, C., Daum, G., Kuckwa, J., Kastl, L., et al. (2013). Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7. Exp Cell Res, 319, 402–416.
  • Bour, B. A., Chakravarti, M., West, J. M., & Abmayr, S. M. (2000). Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev, 14, 1498–1511.
  • Brose, N., Hofmann, K., Hata, Y., & Südhof, T. C. (1995). Mammalian homologues of Caenorhabditis elegans unc-13 gene definde novel family of C2-domain proteins. J Biol Chem, 270, 25273–25280.
  • Bulchand, S., Menon, S. D., George, S. E., & Chia W. (2010). The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner. PLoS One, 5, e9374.
  • Cao, X., Ballew N., & Barlowe C. 1998. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J, 17, 2156–2165.
  • Chapman, E. R., Hanson, P. I., An, S., & Jahn, R. (1995). Ca2 + regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem, 270, 23667–23671.
  • Charlton, C. A., Mohler, W. A., Radice, G. L., Hynes, R. O., & Blau, H. M. (1997). Fusion competence of myoblasts rendered genetically null for N-cadherin in culture. J. Cell Biol, 138, 331–336.
  • Chen, X., Araç, D., Wang, T. M., Gilpin, C. J., Zimmerberg, J., & Rizo, J. (2006). SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys J, 90, 2062–2074.
  • DiAntonio, A., Parfitt, K. D., & Schwarz, T. L. (1993). Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell, 73, 1281–1290.
  • Doberstein, S. K., Fetter, R. D., Mehta, A. Y., & Goodman, C. S. (1997). Genetic analysis of myoblast fusion: Blown fuse is required for progression beyond the prefusion complex. J Cell Biol, 136, 1249–1261.
  • Dottermusch-Heidel, C., Groth, V., Beck, L., & Önel, S. F. (2012). The Arf-GEF Schizo/Loner regulates N-cadherin to induce fusion competence of Drosophila myoblasts. Dev Biol, 368, 18–27.
  • Duan, H, Skeath, J. B., & Nguyen, H. T. (2001). Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development, 128, 4489–4500.
  • Dulubova, I., Yamaguchi, T., Arac, D., Li, H., Huryeva, I., Min, S. W., et al. (2003). Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc Natl Acad Sci U S A, 100, 32–37.
  • Durcan, P. J., Al-Shanti, N., & Stewart, C. E. (2013). Identification and characterization of novel Kirrel isoform during myogenesis. Physiol Rep, 1, e00044.
  • Dworak, H. A., Charles, M. A., Pellerano, L. B., & Sink, H. (2001). Characterization of Drosophila hibris, a gene related to human nephrin. Development, 128, 4265–4276.
  • Estrada, B., Maeland, A. D., Gisselbrecht, S. S., Bloor, J. W., Brown, N. H., & Michelson, A. M. (2007). The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion. Dev Biol, 307, 328–339.
  • Fannon, A. M., & Colman, D. R. (1996). A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherin. Neuron, 17, 423–434.
  • Fasshauer, D., Antonin, W., Subramaniam, V., & Jahn, R. (2002). SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat Struct Biol, 9, 144–151.
  • Fischbach, K. F., Linneweber, G. A., Andlauer, T. F., Hertenstein, A., Bonengel, B., & Chaudhary, K. (2009). The irre cell recognition module (IRM) proteins. J Neurogenet, 23, 48–67.
  • Galletta, B. J., Chakravarti, M., Banerjee, R., & Abmayr, S. M. (2004). SNS: Adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech Dev, 121, 1455–1468.
  • Gerona, R. R., Larsen, E. C., Kowalchyk, J. A., & Martin, T. F. (2000). The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem, 275, 6328–6336.
  • Giagtzoglou, N., Ly, C. V., & Bellen, H. J. (2009). Cell adhesion, the backbone of the synapse: “vertebrate” and “invertebrate” perspectives. Cold Spring Harb Perspect Biol, 1, a003079.
  • Gildor, B., Massarwa, R., Shilo, B. Z., & Schejter, E. D. (2009). The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion. EMBO Rep, 10, 1043–1050.
  • Hansen, S. M., Berezin, V., & Bock, E. (2008). Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin. Cell Mol Life Sci, 65, 3809–3821.
  • Haralalka, S., Shelton, C., Cartwright, H. N., Katzfey, E., Janzen, E., & Abmayr, S. M. (2011). Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competentmyoblasts during myoblast fusion in Drosophila. Development, 138, 1551–1562.
  • Hata, Y., Slaughter, C. A., & Südhof, T. C. (1993). Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature, 366, 347–351.
  • Hornbruch-Freitag, C., Griemert, B., Buttgereit, D., & Renkawitz-Pohl, R. (2011). Drosophila Swiprosin-1/EFHD2 accumulates at the prefusion complex stage during Drosophila myoblast fusion. J Cell Sci, 124, 3266–3278.
  • Hu, C., Ahmed, M., Melia, T. J., Söllner, T. H., Mayer, T., & Rothman, J. E. (2003). Fusion of cells by flipped SNAREs. Science, 300, 1745–1749.
  • Jahn, R., Schiebler, W., Ouimet, C., & Greengard P. (1985). A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A, 82, 4137–4141.
  • Jahn, R., & Fasshauer, D. (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature, 490, 201–207.
  • James, D. J., & Martin, T. F. (2013). CAPS and Munc13: CATCHRs that SNARE vesicles. Front Endocrinol, 4, 187.
  • Janz, R., Südhof, T. C., Hammer, R. E., Unni, V., Siegelbaum, S. A., Bolshakov, V. Y. (1999). Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron, 24, 687–700.
  • Jin, P., Duan, R., Luo, F., Zhang, G., Hong, S. N., Chen, E. H. (2011). Competition between blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev Cell, 20, 623–638.
  • Kaipa, B. R., Shao, H., Schaefer, G., Trinkewitz, T., Groth, V., Liu, J., et al. (2013). Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts. J Cell Sci, 126, 360–372.
  • Kesper, D. A., Stute, C., Buttgereit, D., Kreiskother, N., Vishnu, S., Fischbach, K. F., & Renkawitz-Pohl, R. (2007). Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev Dyn, 236, 404–415.
  • Kim, S., Shilagardi, K., Zhang, S. L., Hong, S. N., Sens, K. L., Bo, J., et al. (2007). A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell, 12, 571–586.
  • Kreisköther, N., Reichert, N., Buttgereit, D., Hertenstein, A., Fischbach, K. F., & Renkawitz-Pohl, R. (2006). Drosophila Rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and Zormin in the terminal Z-discs. J Muscle Res Cell Motil, 27, 93–106.
  • Komori, T., Gyobu, H., Ueno, H., Kitamura, T., Senba, E., & Morikawa, Y. J. (2008). Expression of kin of irregular chiasm-like 3/mKirre in proprioceptive neurons of the dorsal root ganglia and its interaction with nephrin in muscle spindles. Comp Neurol, 11, 92–108.
  • Kozlovsky, Y., Efrat, A., Siegel, D. P., & Kozlov, M. M. (2004). Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys J, 87, 2508–2521.
  • Knaus, P., Marquèze-Pouey, B., Scherer, H., & Betz, H. (1990). Synaptoporin, a novel putative channel protein of synaptic vesicles. Neuron, 5, 453–462.
  • Krauss, R. S. (2010). Regulation and promyogenic signal transduction by cell-cell contact and adhesion. Exp. Cell Res, 316, 3042–3049.
  • Li, W., Ma, C., Guan, R., Xu, Y., Tomchick, D. R., & Rizo, J. (2011). The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure, 19, 1443–1455.
  • Marsden, H. R., Tomatsu, I., & Kros, A. (2011). Model systems for membrane fusion. Chem Soc Rev, 40, 1572–1585.
  • Martens, S., Kozlov, M. M., & McMahon, H. T. (2007). How synaptotagmin promotes membrane fusion. Science, 316, 1205–1208.
  • Martens, S., & McMahon, H. T. (2008). Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol, 9, 543–556.
  • Maruyama, I. N., & Brenner, S. (1991). A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans. Proc Natl Acad Sci U S A, 88, 5729–5733.
  • Massarwa, R., Carmon, S., Shilo, B. Z., & Schejter, E. D. (2007). WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev Cell, 12, 557–569.
  • McMahon, H. T., Kozlov, M. M., & Martens, S. (2010). Membrane curvature in synaptic vesicle fusion and beyond. Cell, 140, 601–605.
  • Mi, S., Lee, X., Li, X., Veldman, G. M., Finnerty, H., Racie, L., et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 403, 785–789.
  • Mielenz, D., Vettermann, C., Hampel, M., Lang, C., Avramidou, A., Karas, M., & Jäck, H. M. (2005). Lipid rafts associate with intracellular B cell receptors and exhibit a B cell stage-specific protein composition. J Immunol, 174, 3508–3517.
  • Millay, D. P., O’Rourke, J. R., Sutherland, L. B, Bezprozvannaya, S., Shelton, J. M., Bassel-Duby, R., & Olson, E. N. (2013). Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 499, 301–305.
  • Missler, M., Südhof, T. C., & Biederer, T. (2012). Synaptic cell adhesion. Cold Spring Harb Perspect Biol, 4, a005694.
  • Misura, K. M., Scheller, R. H., & Weis, W. I. (2000). Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature, 404, 355–362.
  • Nagar, B., Overduin, M., Ikura, M., & Rini, J. M. (1996). Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature, 380, 360–364.
  • Najarro, E. H., Wong, L., Zhen, M., Carpio, E. P., Goncharov, A., Garriga, G., et al. (2012). Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development. J Neurosci, 32, 4196–211.
  • Nonet, M. L., Grundahl, K., Meyer, B. J., & Rand, J. B. (1993). Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell, 73, 1291–1305.
  • Nonet, M. L., Holgado, A. M., Brewer, F., Serpe, C. J., Norbeck, B. A., Holleran, J., et al. (1999). UNC-11, a Caenorhabditis elegans AP180 homologuue, regulates the size and protein composition of synaptic vesicles. Mol Biol Cell, 10, 2343–1360.
  • Oren-Suissa, M., & Podbilewicz, B. (2007). Cell fusion during development. Trends Cell Biol, 17, 537–546.
  • Önel, S. F., & Renkawitz-Pohl, R. (2009). FuRMAS: Triggering myoblast fusion in Drosophila. Dev Dyn, 238, 1513–1525.
  • Önel, S. F., Dottermusch, C., Sickmann, A., Buttgereit, D., & Renkawitz-Pohl, R. (2011). Role of the actin cytoskeleton within FuRMAS during Drosophila myoblast fusion and first functionally conserved factors in vertebrates. In: Larsson, I. (Ed.), Cell Fusions: Regulation and Control. Berlin: Springer, 139–170.
  • Perin, M. S., Brose, N., Jahn, R., & Südhof, T. C. (1991). Domain structure of synaptotagmin (p65). J Biol Chem, 266, 623–629.
  • Prakash, S., Caldwell, J. C., Eberl, D. F, & Clandinin, T. R. (2005). Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat Neurosci, 8, 443–450.
  • Pollard, T. D. (2007). Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct, 36, 451–477.
  • Rehm, H., Wiedenmann, B., & Betz, H. (1986). Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J, 5, 535–541.
  • Richardson, B. E., Beckett, K., Nowak, S. J., & Baylies, M. K. (2007). SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development, 134, 4357–4367.
  • Rickman, C., & Davletov, B. (2003)Mechanism of calcium-dependent synaptotagmin binding to target SNAREs. J Biol Chem, 278, 5501–5504.
  • Rizo, J., & Südhof, T. C. (2012). The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices–guilty as charged? Annu Rev Cell Dev Biol, 28, 279–308.
  • Rochlin, K., Yu, S., Roy, S., & Baylies, M. K. (2010). Myoblast fusion: when it takes more to make one. Dev Biol, 341, 66–83.
  • Rotty, J. D., Wu, C., & Bear, J. E. (2013). New insights into the regulation and cellular functions of the Arp2/3 complex. Nat Rev Mol Cell Biol, 14, 7–12.
  • Ruiz-Gómez M. (1998). Muscle patterning and specification in Drosophila. Int J Dev Biol, 42, 283–290.
  • Ruiz-Gómez, M., Coutts, N., Price, A., Taylor, M. V., & Bate, M. (2000). Drosophila dumbfounded: A myoblast attractant essential for fusion. Cell, 102, 189–198.
  • Sanchez-Pulido, L., Martin-Belmonte, F., Valencia, A., & Alonso, M. A. (2002). MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci, 27, 599–601.
  • Sakurai-Yageta, M., Recchi, C., Le Dez, G., Sibarita, J. B., Daviet, L., Camonis, J. et al. (2008). The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol, 181, 985–998.
  • Schäfer, G., Weber, S., Holz, A., Bogdan, S., Schumacher, S., Müller, A., et al. (2007). The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev Biol, 304, 664–674.
  • Sens, K. L., Zhang, S. L., Jin, P., Duan, R., Zhang, G. F., Luo, F. B., et al. (2010). An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J Cell Biol, 191, 1013–1027.
  • Shelton, C., Kocherlakota, K. S., Zhuang, S. F., & Abmayr, S. M. (2009). The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development, 136, 1159–1168.
  • Shen, K., Fetter, R. D., & Bargmann, C. I. (2004). Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell, 116, 869–881.
  • Shen, K., & Bargmann, C. I. (2003). The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell, 112, 619–630.
  • Sheng, L., Leshchyns'ka, I., & Sytnyk, V. (2013). Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal, 11, 94.
  • Shilagardi, K., Li, S., Luo, F., Marikar, F., Duan, R., Jin, P., et al. (2013). Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science, 340, 359–363.
  • Sohn, R. L., Huang, P., Kawahara, G., Mitchell, M., Guyon, J., Kalluri, R., et al. (2009). A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proc Natl Acad Sci U S A106, 9274–9279.
  • Spiwoks-Becker, I., Vollrath, L., Seeliger, M. W., Jaissle, G., Eshkind, L. G., & Leube, R. E. (2001). Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice. Neuroscience, 107, 127–142.
  • Srinivas, B. P., Woo, J., Leong, W. Y., & Roy, S. (2007). A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat Genet, 39, 781–786.
  • Stan, A., Pielarski, K. N., Brigadski, T., Wittenmayer, N., Fedorchenko, O., Gohla, A., et al. (2010). Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci USA, 107, 11116–11121.
  • Stenius, K., Janz, R., Südhof, T. C., & Jahn, R. (1995). Structure of synaptogyrin (p29) defines novel synaptic vesicle protein. J Cell Biol, 131, 1801–1809.
  • Stevens, R. J., Akbergenova, Y., Jorquera, R. A., & Littleton, J. T. (2012). Abnormal synaptic vesicle biogenesis in Drosophila synaptogyrin mutants. J Neurosci, 32, 18054–18067.
  • Strünkelnberg, M., Bonengel, B., Moda, L. M., Hertenstein, A., de Couet, H. G., Ramos, R. G. P., & Fischbach, K. F. (2001). rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development, 128, 4229–4239.
  • Südhof, T. C. & Rizo, J. (2011). Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol., 3(12), pii: a005637.
  • Sugie, A., Umetsu, D., Yasugi, T., Fischbach, K. F., & Tabata, T. (2010). Recognition of pre- and postsynaptic neurons via nephrin/NEPH1 homologs is a basis for the formation of the Drosophila retinotopic map. Development, 137, 3303–3313.
  • Takamori, S., Holt, M., Stenius, K., Lemke, E. A., Grønborg, M., Riedel, D., et al. (2006). Molecular anatomy of a trafficking organelle. Cell, 127, 831–846.
  • Takenawa, T., & Suetsugu, S. (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol, 8, 37–48.
  • Tanaka, H., Shan, W., Phillips, G. R., Arndt, K., Bozdagi, O., Shapiro, L., et al. (2000). Molecular modification of N-cadherin in response to synaptic activity. Neuron, 25, 93–107.
  • Thalhammer, A., & Cingolani, L. A. (2014). Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology, 78, 23–30.
  • Thiele, C., Hannah, M. J., Fahrenholz, F., & Huttner, W. B. (2000). Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol, 2, 42–49.
  • Togashi H, Sakisaka T, & Takai Y. (2009). Cell adhesion molecules in the central nervous system. Cell Adh Migr, 3, 29–35.
  • Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J., & Takeichi, M. (1996). The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol, 135, 767–779.
  • Völker, L. A., Petry, M., Abdelsabour-Khalaf, M., Schweizer, H., Yusuf, F., Busch, T., et al. (2012). Comparative analysis of Neph gene expression in mouse and chicken development. Histochem Cell Biol, 137, 355–366.
  • Vuadens, F, Rufer, N., Kress, A., Corthésy, P., Schneider, P., & Tissot, J. D. (2004). Identification of swiprosin 1 in human lymphocytes. Proteomics, 4, 2216–2220.
  • Wiedenmann, B., & Franke, W. W. (1985). Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell, 41, 1017–1028.
  • Wu, L. G., Hamid, E., Shin, W., & Chiang, H. C. (2013). Exocytosis and Endocytosis: Modes, function, and coupling mechanisms. Annu Rev Physiol, [Epub ahead of print]
  • Yam, P. T., Pincus, Z., Gupta, G. D., Bashkurov, M., Charron, F., Pelletier, L., and Colman, D. R. (2013). N-cadherin relocalizes from the periphery tp the center of the synapse after transient synaptic stimulation in hippocampal neurons. PLoS One, 8, e79679.
  • Yu, I. M., & Hughson, F. M. (2010). Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol, 26, 137–156.