397
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Wiring dendrites in layers and columns

, , , &
Pages 69-79 | Received 19 Feb 2016, Accepted 29 Mar 2016, Published online: 17 Jun 2016

References

  • Baier, H. (2013). Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annual review of cell and developmental biology, 29, 385–416.
  • Bausenwein, B., Dittrich, A.P., & Fischbach, K. F. (1992). The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell and tissue research, 267, 17–28.
  • Behnia, R., Clark, D.A., Carter, A.G., Clandinin, T.R., & Desplan, C. (2014). Processing properties of ON and OFF pathways for Drosophila motion detection. Nature, 512, 427–430.
  • Carrillo, R.A., Ozkan, E., Menon, K.P., Nagarkar-Jaiswal, S., Lee, P.T., Jeon, M., … Zinn, K. (2015). Control of synaptic connectivity by a network of Drosophila IgSF cell surface proteins. Cell, 163, 1770–1782.
  • Cheng, P.L., & Poo, M.M. (2012). Early events in axon/dendrite polarization. Annual review of neuroscience, 35, 181–201.
  • Cherry, T.J., Wang, S., Bormuth, I., Schwab, M., Olson, J., & Cepko, C.L. (2011). NeuroD factors regulate cell fate and neurite stratification in the developing retina. Journal of neuroscience, 31, 7365–7379.
  • Cubelos, B., Briz, C.G., Esteban-Ortega, G.M., & Nieto, M. (2015). Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II–III cortical neurons. Developmental neurobiology, 75, 163–172.
  • De Camilli, P., Miller, P.E., Navone, F., Theurkauf, W.E., & Vallee, R.B. (1984). Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience, 11, 817–846.
  • Deans, M.R., Krol, A., Abraira, V.E., Copley, C.O., Tucker, A.F., & Goodrich, L.V. (2011). Control of neuronal morphology by the atypical cadherin Fat3. Neuron, 71, 820–832.
  • Dent, E.W., & Gertler, F.B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron, 40, 209–227.
  • Dhande, O.S., & Huberman, A.D. (2014). Retinal ganglion cell maps in the brain: implications for visual processing. Current opinion in neurobiology, 24, 133–142.
  • Emoto, K., He, Y., Ye, B., Grueber, W.B., Adler, P.N., Jan, L.Y., & Jan, Y.N. (2004). Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell, 119, 245–256.
  • Enriquez, J., Venkatasubramanian, L., Baek, M., Peterson, M., Aghayeva U., & Mann, R.S. (2015). Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron, 86, 955–970.
  • Eysel, U.T., Peichl, L., & Wassle, H. (1985). Dendritic plasticity in the early postnatal feline retina: quantitative characteristics and sensitive period. The Journal of comparative neurology, 242, 134–145.
  • Fischbach, K.F., & Dittrich, A.P. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell and tissue research, 258, 441–475.
  • Francis, F., Meyer, G., Fallet-Bianco, C., Moreno, S., Kappeler, C., Socorro, A.C., … Chelly, J. (2006). Human disorders of cortical development: from past to present. The European journal of neuroscience, 23, 877–893.
  • Fuerst, P.G., Koizumi, A., Masland, R.H., & Burgess, R.W. (2008). Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature, 451, 470–474.
  • Guy, J., Wagener, R.J., Mock, M., & Staiger, J.F. (2015). Persistence of functional sensory maps in the absence of cortical layers in the somsatosensory cortex of reeler mice. Cerebral cortex, 25, 2517–2528.
  • Han, C., Wang, D., Soba, P., Zhu, S., Lin, X., Jan, L.Y., & Jan, Y.N. (2012). Integrins regulate repulsion-mediated dendritic patterning of Drosophila sensory neurons by restricting dendrites in a 2D space. Neuron, 73, 64–78.
  • Hattori, Y., Usui, T., Satoh, D., Moriyama, S., Shimono, K., Itoh, T., … Uemura, T. (2013). Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of Abrupt and Knot/Collier. Developmental cell, 27, 530–544.
  • Haeusler, S., & Maass, W. (2007). A statistical analysis of information processing properties of lamina-specific cortical microcircuit models. Cerebral cortex, 17, 149–162.
  • Hill, S.E., Parmar, M., Gheres, K.W., Guignet, M.A., Huang, Y., Jackson, F.R., & Rolls, M.M. (2012). Development of dendrite polarity in Drosophila neurons. Neural development, 7, 34.
  • Honjo, M., Tanihara, H., Suzuki, S., Tanaka, T., Honda, Y., & Takeichi, M. (2000). Differential expression of cadherin adhesion receptors in neural retina of the postnatal mouse. Investigative ophthalmology & visual science, 41, 546–551.
  • Iyer, S.C., Ramachandran Iyer, E.P., Meduri, R., Rubaharan, M., Kuntimaddi, A., Karamsetty, M., & Cox, D.N. (2013). Cut, via CrebA, transcriptionally regulates the COPII secretory pathway to direct dendrite development in Drosophila. Journal of cell science, 126, 4732–4745.
  • Jan, Y.N., & Jan, L.Y. (2010). Branching out: mechanisms of dendritic arborization. Nature reviews neuroscience, 11, 316–328.
  • Jiang, X., Wang, G., Lee, A.J., Stornetta, R.L., & Zhu, J.J. (2013). The organization of two new cortical interneuronal circuits. Nature neuroscience, 16, 210–218.
  • Joo, W., Hippenmeyer, S., & Luo, L. (2014). Neurodevelopment. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science, 346, 626–629.
  • Kamiyama, D., McGorty, R., Kamiyama, R., Kim, M.D., Chiba, A., & Huang, B. (2015). Specification of dendritogenesis site in Drosophila aCC motoneuron by membrane enrichment of Pak1 through Dscam1. Developmental cell, 35, 93–106.
  • Kaas, J.H. (1997). Topographic map are fundamental to sensory processing. Brain research bulletin, 44, 107–112.
  • Kay, J.N., Chu, M.W., & Sanes, J.R. (2012). MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature, 483, 465–469.
  • Kay, J.N., Voinescu, P.E., Chu, M.W., & Sanes, J.R. (2011). Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate. Nature neuroscience, 14, 965–972.
  • Kim, I.J., Zhang, Y., Meister, M., & Sanes, J.R. (2010). Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. Journal of neuroscience, 30, 1452–1462.
  • Koike-Kumagai, M., Yasunaga, K., Morikawa, R., Kanamori, T., & Emoto K. (2009). The target of rapamycin complex 2 controls dendritic tiling of Drosophila sensory neurons through the Tricornered kinase signalling pathway. The EMBO journal, 28, 3879–3892.
  • Kulkarni, V.A., & Firestein, B.L. (2012). The dendritic tree and brain disorders. Molecular and cellular neurosciences, 50, 10–20.
  • Lah, G.J., Li, J.S., & Millard, S.S. (2014). Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring. Neuron, 83, 1376–1388.
  • Lee, H.H., Jan, L.Y., & Jan, Y.N. (2009). Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proceedings of the national academy of sciences of the United States of America, 106, 6363–6368.
  • Lee, J., Peng, Y., Lin, W.Y., & Parrish, J.Z. (2015). Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development, 142, 162–173.
  • Lefebvre, J.L., Sanes, J.R., & Kay, J.N. (2015). Development of dendritic form and function. Annual review of cell and developmental biology, 31, 741–777.
  • Li, L., Gervasi, N., & Girault, J.A. (2015). Dendritic geometry shapes neuronal cAMP signalling to the nucleus. Nature communications, 6, 6319.
  • Li, X., Erclik, T., Bertet, C., Chen, Z., Voutev, R., Venkatesh, S., … Desplan, C. (2013). Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature, 498, 456–462.
  • Li, Z., Van Aelst, L., & Cline, H.T. (2000). Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nature neuroscience, 3, 217–225.
  • Liu, Z., Steward, R., & Luo, L. (2000). Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nature cell biology, 2, 776–783.
  • Lohmann, C., & Wong, R.O. (2001). Cell-type specific dendritic contacts between retinal ganglion cells during development. Journal of neurobiology, 48, 150–162.
  • London, M., & Hausser, M. (2005). Dendritic computation. Annual review of neuroscience, 28, 503–532.
  • Lu, W., Fox, P., Lakonishok, M., Davidson, M.W., & Gelfand, V.I. (2013). Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Current biology, 23, 1018–1023.
  • Magee, J.C. (2000). Dendritic integration of excitatory synaptic input. Nature reviews neuroscience, 1, 181–190.
  • Maisak, M.S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., … Borst, A. (2013). A directional tuning map of Drosophila elementary motion detectors. Nature, 500, 212–216.
  • Masland, R.H. (2012). The neuronal organization of the retina. Neuron, 76, 266–280.
  • Matsuoka, R.L., Nguyen-Ba-Charvet, K.T., Parray, A., Badea, T.C., Chedotal, A., & Kolodkin, A.L. (2011). Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature, 470, 259–263.
  • Meinertzhagen, I.A., & O’Neill, S.D. (1991). Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. The journal of comparative neurology, 305, 232–63.
  • Melnattur, K.V., & Lee, C.H. (2011). Visual circuit assembly in Drosophila. Developmental neurobiology, 71, 1286–1296.
  • Meltzer, S., Yadav, S., Lee, J., Soba, P., Younger, S.H., Jin, P., … Jan, Y.N. (2016). Epidermis-derived semaphorin promotes dendrite self-avoidance by regulating dendrite-substrate adhesion in Drosophila sensory neurons. Neuron, 89, 741–755.
  • Millard, S.S., Lu, Z., Zipursky, S.L., & Meinertzhagen, I.A. (2010). Drosophila dscam proteins regulate postsynaptic specificity at multiple-contact synapses. Neuron, 67, 761–768.
  • Miura, S.K., Martins, A., Zhang, K.X., Graveley, B.R., & Zipursky, S.L. (2013). Probabilistic splicing of Dscam1 establishes identity at the level of single neurons. Cell, 155, 1166–1177.
  • Mountcastle, V.B. (1997). The columnar organization of the neocortex. Brain, 120, 701–722.
  • Mumm, J.S., Williams, P.R., Godinho, L., Koerber, A., Pittman, A.J., Roeser T., … Wong, R.O. (2006). In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron, 52, 609–621.
  • Nakayama, A.Y., Harms, M.B., & Luo, L. (2000). Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. Journal of neuroscience, 20, 5329–5338.
  • Nikolaou, N., & Meyer, M.P. (2015). Lamination speeds the functional development of visual circuits. Neuron, 88, 999–1013.
  • Novelli, E., Resta, V., & Galli-Resta, L. (2005). Mechanisms controlling the formation of retinal mosaics. Progress in brain research, 147, 141–153.
  • Ori-McKenney, K.M., Jan, L. Y., & Jan, Y. N. (2012). Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron, 76, 921–930.
  • Özkan, E., Carrillo, R.A., Eastman, C.L., Weiszmann, R., Waghray, D., Johnson, K.G., … Garcia, K.C. (2013). An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell, 154, 228–239.
  • Peng, Y., Lee, J., Rowland, K., Wen, Y., Hua, H., Carlson, N., … Kim, M.D. (2015). Regulation of dendrite growth and maintenance by exocytosis. Journal of cell science, 128, 4279–4292.
  • Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E., & Woolfrey, K.M. (2013). Dendritic spine pathology in neuropsychiatric disorders. Nature neuroscience, 14, 285–293.
  • Polleux, F., Morrow, T., & Ghosh, A. (2000). Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature, 404, 567–573.
  • Puram, S.V., & Bonni, A. (2013). Cell-intrinsic drivers of dendrite morphogenesis. Development, 140, 4657–4671.
  • Sainath, R., & Gallo, G. (2015). Cytoskeletal and signaling mechanisms of neurite formation. Cell and tissue research, 359, 267–278.
  • Sanes, J.R., & Zipursky, S.L. (2010). Design principles of insect and vertebrate visual systems. Neuron, 66, 15–36.
  • Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., … Zipursky, S.L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell, 101, 671–684.
  • Shen, K., & Cowan, C.W. (2010). Guidance molecules in synapse formation and plasticity. Cold spring harbor perspectives in biology, 2, a001842.
  • Sosa, L., Dupraz, S., Laurino, L., Bollati, F., Bisbal, M., Caceres, A., … Quiroga, S. (2006). IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nature neuroscience, 9, 993–995.
  • Sperry, R.W. (1943). Effect of 180 degree rotation of the retinal field on visuomotor coordination. The journal of experimental zoology, 92, 263–279.
  • Sudarov, A., Gooden, F., Tseng, D., Gan, W.-B., & Ross, M.E. (2013). Lis1 controls dynamics of neuronal filopodia and spines to impact synaptogenesis and social behaviour. EMBO molecular medicine, 5, 591–607.
  • Sudo, H., & Baas, P.W. (2010). Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. Journal of neuroscience, 30, 7215–7226.
  • Sulkowski, M.J., Iyer, S.C., Kurosawa, M.S., Iyer, E.P., & Cox, D.N. (2011). Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila. PLoS one, 6, e22611.
  • Tadros, W., Xu, S., Akin, O., Yi, C.H., Shin, G.J., Millard, S.S., & Zipursky S.L. (2016). Dscam proteins direct dendritic targeting through adhesion. Neuron, 89, 480–493.
  • Takemura, S.Y., Karuppudurai, T., Ting, C.Y., Lu, Z., Lee, C.H., & Meinertzhagen, I.A. (2011). Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Current biology, 21, 2077–2084.
  • Takemura, S.Y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K. … Chklovskii, D.B. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature, 500, 175–181.
  • Tan, L., Zhang, K.X., Pecot, M.Y., Nagarkar-Jaiswal, S., Lee, P.T., Takemura, S.Y., … Zipursky, S.L. (2015). Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila. Cell, 163, 1756–1769.
  • Thu, C.A., Chen, W.V., Rubinstein, R., Chevee, M., Wolcott, H.N., Felsovalyi, K.O., … Maniatis, T. (2014). Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins. Cell, 158, 1045–1059.
  • Ting, C.Y., & Lee, C.H. (2007). Visual circuit development in Drosophila. Current opinion in neurobiology, 17, 65–72.
  • Ting, C.Y., McQueen, P.G., Pandya, N., Lin, T.Y., Yang, M., Reddy, O.V., … Lee, C.H. (2014). Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron, 81, 830–846.
  • Valnegri, P., Puram, S.V., & Bonni, A. (2015). Regulation of dendrite morphogenesis by extrinsic cues. Trends in neuroscience, 38, 439–447.
  • Wagener, R.J., Witte, M., Guy, J., Mingo-Moreno, N., Kugler, S., & Staiger J.F. (2016). Thalamocortical connections drive intracortical activation of functional columns in the mislaminated reeler somatosensory cortex. Cerebral cortex, 26, 820–837.
  • Winter, C.G., Wang, B., Ballew, A., Royou, A., Karess, R., Axelrod, J.D., & Luo, L. (2001). Drosophila Rho-associated kinase (Drok) links frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell, 105, 81–91.
  • Wojtowicz, W.M., Wu, W., Andre, I., Qian, B., Baker, D., & Zipursky, S.L. (2007). A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell, 130, 1134–1145.
  • Wong, W.T., Faulkner-Jones, B.E., Sanes, J.R., & Wong, R.O. (2000). Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. Journal of neuroscience, 20, 5024–5036.
  • Wu, Q., & Maniatis, T. (1999). A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell, 97, 779–790.
  • Yamagata, M., & Sanes, J.R. (2008). Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature, 451, 465–469.
  • Yamagata, M., & Sanes, J.R. (2012). Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. Journal of neuroscience, 32, 14402–14414.
  • Yamagata, M., Weiner, J.A., & Sanes, J.R. (2002). Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell, 110, 649–660.
  • Ye, B., Zhang, Y., Song, W., Younger, S.H., Jan, L.Y., & Jan, Y.N. (2007). Growing dendrites and axons differ in their reliance on the secretory pathway. Cell, 130, 717–729.
  • Youn, Y.H., Pramparo, T., Hirotsune, S., & Wynshaw-Boris, A. (2009). Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. Journal of neuroscience, 29, 15520–15530.
  • Yu, W., Cook, C., Sauter, C., Kuriyama, R., Kaplan, P.L., & Baas, P.W. (2000). Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. Journal of neuroscience, 20, 5782–5791.
  • Zheng, Y., Wildonger, J., Ye, B., Zhang, Y., Kita, A., Younger, S.H., … Jan Y.N. (2008). Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nature cell biology, 10, 1172–1180.
  • Zhou, W., Chang, J., Wang, X., Savelieff, M. G., Zhao, Y., Ke, S., & Ye, B. (2014). GM130 is required for compartmental organization of dendritic Golgi outposts. Current biology, 24, 1227–1233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.