18
Views
37
CrossRef citations to date
0
Altmetric
Original Article

Ca2+-Dependent Proteolytic Modification of the Camp-Dependent Protein Kinase in Drosophila Wild-Type and Dunce Memory Mutants

&
Pages 95-114 | Received 01 Mar 1989, Published online: 11 Jul 2009

References

  • Aceves-Pina E. O., Booker R., Duerr J. S., Livingstone M. S., Quinn W. G., Smith R. F., Sziber P. P., Tempel B. L., Tully T. P. Learning and memory in Drosophila studied with mutants. Cold Spring Harbor Symp. Quant. Biol. 1983; 48: 831–840
  • Adam G., Friedrich P. Microtubule associated cyclic AMP-dependent protein kinase in Drosophila melanogaster. J. Neurochem. 1988; 51: 1014–1022
  • Alhanaty E., Patinkin J., Tauber-Finkelstein M., Shaltiel S. Degradative inactivation of cyclic AMP-dependent protein kinase by a membranal proteinase is restricted to the free catalytic subunit in its native conformation. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 3492–3495
  • Alkon D. L. Calcium-mediated reduction of ionic currents, a biophysical memory trace. Science 1984; 226: 1037–1045
  • Beer D. G., Butley M. S., Malkinson A. M. Developmental changes in the endogenous Ca2+-stimulated proteolysis of mouse lung cAMP-dependent protein kinases. Arch. Biochem. Biophys. 1984; 228: 207–219
  • Bubis J., Taylor S. S. Limited proteolysis alters the photoaffinity labeling of adenosine 3',5'- monophosphate dependent protein kinase II with 8-azidoadenosine 3',5'-monophosphate. Biochemistry 1987; 26: 5997–6004
  • Byers D., Davis R. L., Kiger J. A., Jr. Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature (London) 1981; 289: 79–81
  • Cassel D., Glaser L. Resistance to phosphatase of thiophosphorylated epidermal growth factor receptor in A431 membranes. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 2231–2235
  • Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 1977; 252: 1102–1106
  • Cohen P. The role of protein phosphorylation in the hormonal control of enzyme activity. Eur. J. Biochem. 1985; 151: 439–448
  • Corbin J. K., Sugden P. H., Lincoln T. M., Kelly S. L. Compartmentalization of adenosine 3', 5'-monophosphate and adenosine 3',5'-monophosphate-dependent protein kinase in heart tissue. J. Biol. Chem. 1977; 252: 3854–3861
  • Corbin J. D., Sugden P. H., West L., Flockhardt D. A., Lincoln T. M., McCarthy D. Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3', 5'-monophosphate dependent protein kinase. J. Biol. Chem. 1978; 253: 3997–4003
  • DeMartino G. N. Calcium-dependent proteolytic activity in rat liver: Identification of two proteases with different calcium requirements. Arch. Biochem. Biophys. 1981; 211: 253–257
  • Dudai Y., Jan Y.-N., Byers K., Quinn W. G., Benzer S. Dunce a mutant of Drosophila deficient in learning. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1684–1688
  • Dudai Y., Uzzan A., Zvi S. Abnormal activity of adenylate cyclase in Drosophila memory mutant rutabaga. Neurosci. Lett. 1983; 42: 207–212
  • Erlichman J., Sarkar D., Fleischer N., Rubin C. S. Identification of two subclasses of type II cAMP-dependent protein kinases. J. Biol. Chem. 1980; 255: 8179–8184
  • Flockhart D. A., Corbin J. D. Regulatory mechanisms in the control of protein kinases. CRC Crit. Rev. Biochem. 1982; 12: 133–186
  • Folkers D., Spatz H.-Ch. Visual learning performance of Drosophila melanogaster is altered by neuropharmaca affecting phosphodiesterase activity and acetylcholine transmission. J. Insect. Physiol. 1984; 30: 957–965
  • Foster J. L., Guttmann J. J., Hall L. M., Rosen O. M. Drosophila cAMP-dependent protein kinase. J. Biol. Chem. 1984; 259: 13049–13055
  • Friedrich P., Solti M., Gyurkovics H. Microcompartmentation of cAMP in wild-type and memory-mutant dunce strains of Drosophila melanogaster. J. Cell. Biochem. 1984; 26: 197–203
  • Goelet P., Castellucci V. F., Schacher S., Kandel E. R. The long and short of long-term memory- a molecular framework. Nature (London) 1986; 322: 419–422
  • Greenberg S. M., Castellucci V. F., Bayley H., Schwartz J. H. A molecular mechanism for long-term sensitization in Aplysia. Nature (London) 1987; 329: 62–65
  • Harris W. A., Stark W. S., Walker J. A. Genetic dissection of the photoreceptor system of the compound eye of Drosophila melanogaster. J. Physiol. 1976; 256: 415–439
  • Hathaway D. R., Werth D. K., Haeberle J. R. Limited autolysis reduces the Ca2+-requirement of a smooth muscle Ca2+-activated protease. J. Biol. Chem. 1982; 257: 9072–9077
  • Ingebritsen T. S., Cohen P. Protein phosphatases: Properties and role in cellular regulation. Science 1983; 221: 331–338
  • Kalderon D., Rubin G. M. Isolation and characterization of Drosophila cAMP-dependent protein kinase genes. Genes & Development 1988; 2: 1539–1556
  • Kandel E. R., Schwartz J. H. Molecular biology of learning: Modulation of transmitter release. Science 1982; 218: 433–443
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970; 227: 680–685
  • Livingstone M. S., Sziber P. P., Quinn W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga a Drosophila learning mutant. Cell 1984; 37: 205–215
  • Montarolo P. G., Castellucci V. F., Morgan J., Kandel E. R., Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 1986; 234: 1249–1254
  • Murachi T. Intracellular Ca2+ protease and its inhibitor protein: Calpain and Calpastatin. Calcium and Cell Function, W. Y. Cheung. Academic Press, New York 1983; Vol. 4: 378–405
  • Müller U., Spatz H.-Ch. A micromethod for the preparation of tissue from defined fractions of a Drosophila head and its analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis 1986; 7: 210–213
  • Müller U., Wojna Z., Konig B., Spatz H.-Ch. Thiophosphorylation of the regulatory subunit of the cAMP-dependent protein kinase from Drosophila brain tissue. Insect Biochem. 1988; 18: 351–358
  • Mumby M., Beavo J. A. Unique properties of monoclonal antibodies as probes of the structure, function and regulation of protein kinases. Cold Spring Harbor Conf. Cell Prolif. 1981; 8: 105–124
  • Neary J. T., Alkon D. L. Proteinphosphorylation-dephosphorylation and transient, voltage dependent potassium conductance in Hermissenda crassicornis. J. Biol. Chem. 1983; 258: 8979–8983
  • Nestler E. J., Greengard P. Protein Phosphorylation in the Nervous Tissue. John Wiley & Sons, New York 1984
  • Otsuka Y., Tanaka H. Purification of new calcium activated protease calcium requiring form and comparison to high calcium requiring form. Biochem. Biophys. Res. Commun. 1983; 111: 700–709
  • Pinter M., Friedrich P. The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster. Biochem. J. 1988; 253: 467–473
  • Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Horecker B. L. Cytosolic Ca2+-dependent neutral proteinases from rabbit liver: Activation of the proenzyme by Ca2+ and substrate. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 53–56
  • Potter R. L., Taylor S. S. The structural domains of cAMP-dependent protein kinase I: Characterization of two sites of proteolytic cleavage and homologies to cAMP-dependent protein kinase II. J. Biol. Chem. 1980; 255: 9706–9712
  • Quinn W. G., Sziber P. P., Booker R. The Drosophila memory mutant amnesiac. Nature (London) 1979; 277: 212–214
  • Rannels S. R., Cobb C. E., Landiss L. R., Corbin J. D. The regulatory subunit monomer of cAMP-dependent protein kinase retains the salient kinetic properties of the native dimeric subunit. J. Biol. Chem. 1985; 260: 3423–3430
  • Reimann E. M. Conversion of bovine cardie adenosine cyclic 3',5'-phosphate dependent protein kinase to a heterodimer by removal of 45 residues at the N-terminus of the regulatory subunit. Biochemistry 1986; 25: 119–125
  • Rubin C. S., Rangel- Aldao R., Sarkar D., Erlichmann J., Fleischer N. Characterization and comparison of membrane associated and cytosolic cAMP-dependent protein kinase. J. Biol. Chem. 1979; 254: 3797–3805
  • Rubin C. S., Fleischer N., Sarkar D., Erlichman J. Neural-specific and nonneural protein kinases: Subclasses of type II protein kinases Cold Spring Harbor Conf. Cell Prolif 1981; 8: 1333–1346
  • Salama S. E., Haslam R. J. Subcellular distribution of cyclic AMP-dependent protein kinase activity and of cyclic AMP-binding proteins in human platelets. FEBS Lett. 1981; 130: 230–234
  • Schwartz J. H., Greenberg S. M. Molecular mechanisms for memory: second messenger induced modifications of protein kinases in nerve cells. Ann. Rev. Neurosci. 1987; 10: 459–476
  • Schwechheimer K., Hofmann F. Properties of regulatory subunit of cyclic AMP-dependent protein kinase (Peak I) from rabbit skeletal muscle. Prepared by urea treatment of the holoenzyme. J. Biol. Chem. 1977; 252: 7690–7696
  • Shuster M. J., Camardo J. S., Siegelbaum S. A., Kandel E. R. Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurons in cell-free membrane patches. Nature (London) 1985; 313: 392–395
  • Srivastava A. K., Stellwagen R. H. Presence of the sites for interacting with cyclic AMP and with catalytic subunit on small fragments of protein kinase regulatory subunit. J. Biol. Chem. 1978; 253: 1752–1755
  • Steinberg R. A., Agard D. A. Turnover of the regulatory subunit of cyclic AMP-dependent protein kinase in S49 mouse lymphoma cells: regulation by catalytic subunit and analogs of cAMP. J. Biol. Chem. 1981; 256: 10731–10734
  • Takio K., Walsh K. A., Neurath H., Smith S. B., Krebs E. G., Titani K. The amino acid sequence of a hinge region in the regulatory subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase II. FEBS Lett. 1980; 114: 83–88
  • Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamidgels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 4350–4354
  • Vogel M., Heinz F. The isolation and characterization of a dimeric cyclic AMP-dependent protein kinase and of the corresponding regulatory subunit. FEBS Lett. 1980; 122: 223–226
  • Waxman L., Krebs E. G. Identification of two protease inhibitors from bovine cardiac muscle. J. Biol. Chem. 1978; 253: 5888–5891
  • Weber W., Hilz H. Adenosine-3':5'-monophosphate-binding proteins from bovine kidney. Eur. J. Biochem. 1978; 83: 215–225
  • Weber W., Hilz H. Stoichiometry of cAMP binding and limited proteolysis of protein kinase regulatory subunit RI and RII Biochem. Biophys. Res. Com. 1979; 90: 1073–1081
  • Weber W., Hilz H. cAMP-dependent protein kinases I and II: Divergent turnover of subunits. Biochemistry 1986; 25: 5661–5667
  • Weldon S. L., Taylor S. S. Monoclonal antibodies as probes for functional domains in cAMP- dependent protein kinase II. J. Biol. Chem. 1985; 260: 4203–4209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.