128
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Xenotransplanted Human Prostate Carcinoma (DU145) Cells Develop into Carcinomas and Cribriform Carcinomas: Ultrastructural Aspects

, MSc, EdM, DSc, , PhD, , BS, MT, , MD, PhD & , MD, PhD
Pages 294-311 | Received 15 Jun 2012, Accepted 26 Jun 2012, Published online: 01 Oct 2012

REFERENCES

  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012; 61:10–29.
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61:69–90.
  • Cancer Research UK. Cancer in the United Kingdom, April 2011. Cancer Res UK; info.cacerresearchUK.org/
  • Miller DC, Zheng SL, Dunn RL, et al. Berm-line mutations of the macrophage scavenger receptor 1 gene: association with prostate cancer risk in African-American men. Cancer Res. 2003; 63: 3486–3489.
  • Bock CH, Schwartz AG, Rutterbusch JJ, et al. Results from a prostate cancer admixture mapping study in African American men. Hum Genet. 2009; 26: 637–647.
  • Gilloteaux J, Jamison JM, Neal D, Arnold D, Summers JL. Human prostate DU145 carcinoma cells implanted in nude mice displace the peritoneal mesothelium to grow invasively as solid and cribriform carcinomas. Anat Rec. 2012; submitted.
  • Mickey DD, Stone KR, Wunderli H, Mickey GH, Vollmer RT, Paulson DF. Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Res. 1977; 37: 4049–4058.
  • Mickey DD, Stone KR, Wunderli H, Mickey GH, Paulson DF. Characterization of a human prostate adenocarcinoma cell line (DU 145) as a monolayer culture and as a solid tumor in athymic mice. Prog Clin Biol Res. 1980; 37: 67–84.
  • Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978; 21: 274–281.
  • Cohen MB, Heidger PM, Lubaroff DM. Gross and microscopic pathology of indiced pprostatic complex tumors arising in Lobund-Wistar rats. Cancer Res. 1994; 54: 626–628.
  • Dhom G. Prostata. In: Hedinger CE, Dhom G, eds. Pathologie des männlichen Genitale. Berlin: Springer; 1991: 458–642 and 548–553.
  • Ahn SK, Kim K, Choi IJ, Lee JM. 1991. Adenoid cystic carcinoma of the prostate gland. Yonsei Med J 32: 74–78.
  • Montironi R, Mazzucchelli R, Algaba F, Lopez-Beltran A. Morphological identification of the patterns of prostatic intraepithelial neoplasia and their importance. J Clin Pathol. 2000; 53: 655–665.
  • Shin M, Takayama H, Nonomura N, Wakatsuki, Okuyama A, Aozasa K. Extend and zonal distribution of prostatic intraepithelial neoplasia in patient with prostatic carcinoma in Japan: analysis of whole-mounted prostatectomy specimens. The Prostate. 2000; 42: 81–87.
  • Bostwick DG, Liu L, Brawer MK. High-grade prostatic intraepithelial neoplasia. Rev Urol. 2004;6: 171–179.
  • Epstein JI. Precursor lesions to prostatic adenocarcinoma. Virchows Arch. 2009; 454: 1–16.
  • Dema A, Borda A, Lazar E, et al. Prostate lesions with cribriform/pseudocribriform pattern. Rom J Morph Embryol. 2010; 51: 413–425.
  • Taper HS, Jamison JM, Gilloteaux J, Gwin CA, Gordon T, Summers JL. In vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C:K3 J Histochem Cytochem. 2001; 49: 109–119.
  • Gilloteaux J, Jamison JM, Venugopal M, Giammar D, Summers JL. Scanningelectron microscopy and transmission electron microscopy aspects of synergistic antitumor activity of vitamin C–vitamin K3 combinations against human prostatic carcinoma cells. Scanning Microsc. 1995; 9:159–173.
  • Aparicio SR, Marsden P. Application of standard micro-anatomical staining methods to epoxy resin-embedded sections. J Clin Pathol. 1969; 22: 589–592.
  • Jamison JM, Gilloteaux J, Venugopal M, et al. Flow cytometric and ultrastructural aspects of the synergistic antitumor activity of vitamin C–vitamin K3 combinations against human prostatic carcinoma cells. Tissue Cell. 1996; 28:687–701
  • Venugopal M, Jamison JM, Gilloteaux J, et al. Synergistic antitumour activity of vitamins C and K3 against human prostate carcinoma cell lines. Cell Biol Int. 1996; 20:787–797.
  • Venugopal M, Jamison JM, Gilloteaux J, et al. Synergistic antitumor activity of vitamins C and K3 on human urologic tumor cell lines. Life Sci. 1996;59(17):1389–1400.
  • Jamison JM, Gilloteaux J, Neal D, Summers JL. Characterization of the early events in vitamin C and K3-induced death of human prostate tumor cells. Scanning. 1999; 21: 107–108.
  • Gilloteaux J, Jamison JM, Neal DR, Summers JL. Cell death by autoschizis in TRAMP prostate carcinoma cells as a result of treatment by ascorbate: menadione combination. Ultastruct Pathol. 2005; 29: 221–235.
  • Jamison JM, Gilloteaux J, Taper HS, et al. The in vitro and in vivo antitumor activity of vitamin C:K3 combinations against prostate cancer. In: Lucas JL, ed. Prostate Cancer. Hauppauge, NY: Nova Science; 2005: 423–471.
  • Doré JF, Bailly M, Bertrand S. Metastases of human tumors in experimental animals. Anticancer Res. 1987; 7:997–1003.
  • Kubota T. Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem. 1994; 56:4–8.
  • Turner T, Chen P, Goodly LJ, Wells A. EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clin Exp Metastasis. 1996;14: 409–418.
  • Turner T, VanEpps-Fung M, Kassis J, Wells A. Molecular inhibition of PLCγ signaling abrogates DU-145 prostate tumor cell invasion. Clin Cancer Res. 1997;3: 2275–2282.
  • Pretlow TG, Schwartz S, Giaconia JM, et al. Prostate cancer and other xenografts from cells in peripheral blood of patients. Cancer Res. 2000; 60: 4033–4036.
  • Chatterjee B. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. Mol Cell Biochem. 2003; 253:89–101.
  • Chatterjee S, Park ES, Soloff MS. Proliferation of DU145 prostate cancer cells is inhibited by suppressing insulin-like growth factor binding protein-2. Int J Urol. 2004; 11:876–884.
  • Chunthapong J, Seftor EA, Khalkhali-Ellis Z, et al. Dual roles of E-cadherin in prostate cancer invasion. J Cell Biochem. 2004; 91: 649–661.
  • Mamoune A, Kassis J, Kharait S, et al. DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Exp Cell Res. 2004; 299: 91–100.
  • Oosterhoff JK, Kühne LC, Grootegoed JA, Blok LJ. EGF signalling in prostate cancer cell lines is inhibited by a high expression level of the endocytosis protein REPS2. Int J Cancer. 2005; 113: 561–567.
  • Mori K, Le Goff B, Charrier C, Battaglia S, Heymann D, Rédini F. DU145 human prostate cancer cells express functional receptor activator of NFkappaB: new insights in the prostate cancer bone metastasis process. Bone. 2007; 40: 981–990.
  • Yu CH, Kan SF, Pu HF, Jea Chien E, Wang PS. Apoptotic signaling in bufalin- and cinobufagin-treated androgen-dependent and -independent human prostate cancer cells. Cancer Sci. 2008 Dec;99(12):2467–2476.
  • Wang Y, Yue D, Li K, Liu YL, Ren CS, Wang P. The role of TRPC6 in HGF-induced cell proliferation of human prostate cancer DU145 and PC3 cells. Asian J Androl. 2010; 12:841–852.
  • Lawrence MG, Margaryan NV, Loessner D, et al. Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells. Prostate. 2011; 71:1198–1209.
  • Rybak AP, He L, Kapoor A, Cutz JC, Tang D. Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Biochim Biophys Acta. 2011; 181: 683–694.
  • Shanmugam MK, Rajendran P, Li F, et al. Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med. 2011; 89: 713–727.
  • Willis RA. Pathology of Tumors. Washington, DC: Butterworths; 1960: 148–166.
  • Drasdo D, Höhme S. Individual-based approaches to birth and death in avascular tumors. Mathl Comput Modelling. 2003; 37: 1163–1175.
  • Kaminski A, Hahne JC, Haddouti E, Florin A, Wellmann A, Wernert N. Tumour-stroma interactions between metastatic prostate cancer cells and fibroblasts. Int J Mol Med. 2006;18: 941–950
  • Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet.1995; 9: 401–406.
  • Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett. 2006; 580:2294–3000.
  • Williams SA, Jelinek CA, Litvinov I, Cotter RJ, Isaacs JT, Denmeade SR. Enzymatically active prostate-specific antigen promotes growth of human prostate cancers. Prostate. 2011; 71:1595–1607.
  • Ligęza J, Ligęza J, Klein A. Growth factor/growth factor receptor loops in autocrine growth regulation of human prostate cancer DU145 cells. Acta Biochim Pol. 2011; 58: 391–396.
  • Higgins LH, Withers HG, Garbens A, et al. Hypoxia and the metabolic phenotype of prostate cancer cells. Biochim Biophys Acta. 2009; 1787:1433–1443
  • Dai Y, Bae K, Siemann DW. Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys. 2011; 81: 521–528.
  • Guo Z, He Y, Wang S, et al. Various effects of hepatoma-derived growth factor on cell growth, migration, and invasion of breast cancer and prostate cancer cells. Oncol Rep. 2011; 26: 511–517.
  • Qu-Hong JA, Nagy DR, Senger HF, Dvorak HF, Dvorak AM. Ultrastructural localization of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) to the abluminal plasma membrane and vesiculovacuolar organelles of tumor microvascular endothelium. J Histochem Cytochem. 1995; 43: 381–389.
  • Peng YB, Zhou J, Gao Y, et al. Normal prostate-derived stromal cells stimulate prostate cancer development. Cancer Sci. 2011; 102: 1630–1635.
  • Nguyen HL, Zucker S, Zarrabi K, Kadam P, Schmidt C, Cao J. Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase. Mol Cancer Res. 2011; 9: 1305–1318.
  • Ksiazek K, Mikuła-Pietrasik J, Catar R, et al. Oxidative stress-dependent increase in ICAM-1 expression promotes adhesion of colorectal and pancreatic cancers to the senescent peritoneal mesothelium. Int J Cancer. 2010; 127: 293–303.
  • Navone NM, Troncoso P, Pisters LL, et al. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst. 1993; 85: 1657–1669.
  • Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997; 275:1943–1947.
  • Li Y, Su J, DingZhang X, et al. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J Pathol. 2011; 224: 90–100.
  • Vo BT, Khan SA. Expression of nodal and nodal receptors in prostate stem cells and prostate cancer cells: autocrine effects on cell proliferation and migration. Prostate. 2011;71:1084–1096.
  • D’Antonio KB, Schultz L, Albadine R, et al. Decreased expression of Cyr61 is associated with prostate cancer recurrence after surgical treatment. Clin Cancer Res. 2010; 16: 5908–5913.
  • Abdulghani J, Gu L, Dagvadorj A, et al. Stat3 promotes metastatic progression of prostate cancer. Am J Pathol. 2008; 72:1717–1728.
  • Gerstein AV, Almeida TA, Zhao G, et al. APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer. 2002; 34: 9–16.
  • Park ER, Pullikuth AK, Bailey EM, Mercante DE, Catling AD. Differential requirement for MEK Partner 1 in DU145 prostate cancer cell migration. Cell Commun Signal. 2009; 7:26.
  • Colella R, Jackson T, Goodwyn E. Matrigel invasion by the prostate cancer cell lines, PC3 and DU145, and cathepsin L+B activity. Biotech Histochem. 2004; 79:121–127.
  • Wu W, Walker AM. Human chorionic gonadotropin beta (HCGbeta) down-regulates E-cadherin and promotes human prostate carcinoma cell migration and invasion. Cancer.2006; 106: 68–78.
  • Ko YH, Ha YR, Kim JW, et al. Silencing of the GnRH type 1 receptor blocks the antiproliferative effect of the GnRH agonist, leuprolide, on the androgen-independent prostate cancer cell line DU145. J Int Med Res. 2011; 39: 729–739.
  • Shimoyama Y, Hiroshashi S, Hirano S, et al. Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas. Cancer Res. 1989; 49: 2128–2133.
  • Gilloteaux J. Les connexions intercellulaires d’un muscle lisse: ultrastructure du muscle rétracteur anterieur du byssus (ABRM) de Mytilus edulis L. (Mollusca Pelecypoda). Cytobiologie (previously Eur J Cell Biol). 1976; 12, 456–472.
  • Shapiro L, Fannon AM, Kwong PD, et al. Structural basis of cell-cell adhesion by Cadherins. Nature. 1995; 374: 327–337.
  • Rubin MA, Mucci NR, Figurski J, Fecko A, Pienta KJ, Day ML. E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol. 2001; 32: 690–697.
  • Paul R, Ewing CM, Jarrard DF, Isaacs WB. The cadherin cell-cell adhesion pathway in prostate cancer progression. Br J Urol. 1997; 1: 37–43.
  • De Marzo AM, Knudsen B, Chan-Tack K, Epstein JI. E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical prostatectomy specimens. Urology. 1999; 53:707–713.
  • Umbas R, Isaaacs WB, Bringuier PP, et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 1994; 54: 3929–3933.
  • Cheng L, Nagabhushan M, Pretlow TP, Amini SB, Pretlow TG. Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol. 1996; 148: 1375–1380.
  • Rios-Doria J, Day KC, Kuefer R, et al. The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem. 2003; 278: 1372–1379.
  • Katayama M, Hirai S, Kamihagi K, Nakagawa K, Yasumoto M, Kato I. Soluble E-cadherin fragments increased in circulation of cancer patients. Br J Cancer. 1994; 69:580–585
  • Kuefer R, Hofer MD, Gschwend JE, et al. The role of an 80 kDa fragment of E-cadherin in the metastatic progression of prostate cancer. Clin Cancer Res. 2003; 9: 6447–6452.
  • Kuefer R, Hofer MD, Zorn CS, et al. Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer. Br J Cancer. 2005; 92: 2018–2023.
  • Morton RA, Ewing CM, Nagafuchi A, Tsukita S, Isaacs WB. Reduction of E-cadherin levels and deletion of the alpha-catenin gene in human prostate cancer cells. Cancer Res. 1993; 53:3585–3590.
  • Morita N, Uemura H, Tsumatani K, et al. E-cadherin and alpha-, beta- and gamma-catenin expression in prostate cancers: correlation with tumour invasion. Br J Cancer. 1999; 79:1879–1883.
  • Aaltomaa S, Kärjä V, Lipponen P, et al. Reduced alpha- and beta-catenin expression predicts shortened survival in local prostate cancer. Anticancer Res. 2005; 25:4707–4712.
  • Herzig M, Savarese F, Novatchkova M, Semb H, Christofori G. Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene. 2007 Apr 5;26(16):2290–2298.
  • Putzke AP, Ventura AP, Bailey AM, et al. Metastatic progression of prostate cancer and E-cadherin regulation by zeb1 and STRc family kinases. Am J Pathol. 2011; 179: 400–410.
  • Tran NL, Nagle RB, Cress AE, Heimark RL. N-cadherin expression in human prostatecarcinoma cell lines: an epithelial-mesenchymal transformation mediating adhesion with stromal cells. Am J Pathol. 1999; 155: 787–798.
  • Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007; 13: 7003–7011.
  • Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE, Welen K. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocrin Relat Cancer. 2010;17: 469–479.
  • Tanaka H, Kono E, Tran CP, et al. Monoclonal antibody targeting N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010; 16: 1414–1420.
  • Kümper S, Ridley AJ. P120ctn and P-cadherin but not E-cadherin regulate cell motility and invasion of DU145 prostate cancer cells. PLos One. 2010; 5: e11801.
  • Otto T, Rembrink K, Goepel M, Meyer-Schwickerath M, Rübben H. E-cadherin: a marker for differentiation and invasiveness in prostatic carcinoma. Urol Res. 1993; 21:359–362.
  • Nalai AK, Estes N, Patel J, Rao JS. N-cadherin mediates angiogenesis by regulating monocyte chemoattractant protein-1 expression via PI3K/Akt signalling in prostate cancer cells. Exp Cell Res. 2011; 317: 2511–2521.
  • Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005; 17: 548–558.
  • Platica M, Ivan E, Holland JF, et al. A pituitary gene encodes a protein that produces differentiation of breast and prostate cancer cells. Proc Natl Acad Sci USA. 2004; 101: 1560–1565.
  • Park ER, Pullikuth AK, Bailey EM, Mercante DE, Catling AD. Differential requirement for MEK Partner 1 in DU145 prostate cancer cell migration. Cell Commun Signal. 2009; 7:26.
  • Wells CM, Whale AD, Parsons M, Masters JRW, Jones GE. PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. J Cell Sci. 2010; 123: 1663–1673.
  • Nightingale J, Chaudhary KS, Abel PD, et al. Ligand activation of the androgen receptor down regulates E-cadherin-mediated cell adhesion and promotes apoptosis of prostatic cancer cells. Neoplasia. 2003; 5: 347–336.
  • Kwok WK, Ling MT, Lee TW, et al. Up-regulation of TWIST in prostate cancer and its implication as therapeutic target. Cancer Res. 2005; 65: 5153–5163.
  • Kuo P-L, Chen Y-H, Chen T-C, Shen, K-H, Hsu Y-L. CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signalling pathway. J Cell Physiol. 2011; 226: 1224–1231.
  • Katayama M, Hirai S, Kamihagi K, Nakagawa K, Yasumoto M, Kato I. Soluble E-cadherin fragments increased in circulation of cancer patients. Br J Cancer. 1994; 69: 580–585.
  • De Wever O, Derycke L, Hendrix A, et al. Soluble cadherins as cancer biomarkers. Clin Exp Metastasis. 2007; 24: 685–697.
  • Foulds L. Neoplasms of the urinary tract. In: Neoplastic Development, vol. 2. London: Academic Press;1975: 163–204.
  • Coman DR. Mechanisms responsible for the origin and distribution of blood-borne tumor metastases: a review. Cancer Res. 1953; 13: 397–404.
  • De Wever O, Pauwels P, De Craene B, et al. Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochem Cell Biol. 2008; 130: 481–494.
  • Kuroda N, Toi M, Yamamoto M, et al. Immunocytochemical identification of intracytoplasmic lumens by cytokeratin typing may differentiate renal oncocytomas from chromophobe renal cell carcinomas. Histol Histopathol. 2004. 19: 23–28.
  • Ghadially FN. Ultrastructural Pathology of the Cell and Matrix, vol. 2. Boston: Butterworth-Heinemann; 1997:1072–1083.
  • Erlandsen RA. Intracytoplasmic lumens. In: Diagnostic Transmission Electron Microscopy of Tumors. New York: Raven Press; 1994: 205–207.
  • Ferguson DJ, Anderson TJ, Wells CA, Battersby S. An ultrastructural study of mucoid carcinoma of the breast: variability of cytoplasmic features. Histopathology. 1986; 10: 1219–1230.
  • Battifora H. Intracytoplasmic lumina in breast carcinoma: a helpful histopathologic feature. Arch Pathol. 1975;99: 614–617.
  • Tsuchiya S. Intracytopalsmic lumina of human breast cancer- a microscopic study and practical application in cytological diagnosis. Acta Pathol Jpn. 1981;31: 45–54.
  • Nesland JM, Holm R, Lunde S, Johannessen JV. Diagnostic problems in breast pathology: the benefit of ultrastructural and immunocytochemical analysis. Ultrastruct Pathol. 1987; 11: 293–311.
  • Gu CM. Intracytoplasmic lumina of benign and malignant breasts diseases—a light and electron microscopic study. Zhonghua Zhong Liu Za Zhi. 1990;12: 264–267.
  • Sobrinho-Simões M, Johannessen JV, Gould VE. The diagnostic significance of intracytoplasmic lumina in metastatic neoplasms. Ultrastruct Pathol. 1981; 2: 327–335.
  • Quincey C, Raitt N, Bell J, Ellis IO. Intracytoplasmic lumina—a useful diagnostic feature of adenocarcinomas. Histopathology. 1991; 19: 83–87.
  • Alroy J, Pauli BU, Hayden JE, Gould VE. Intracytoplasmic lumina in bladder carcinomas. Hum Pathol. 1979; 10: 549–555.
  • Remy L, Marvaldi J. Origin of intracellular lumina in HT29 colonic adenocarcinoma cell line: an ultrastructural study. Virchows Arch B. 1985; 48:145–153.
  • Boysen M, Reith A. 1980. Intracytoplasmic lumina with and without cilia in both normal and pathologically altered nasal mucosa. Ultrastruct Pathol. 4: 477–485.
  • Ho KL, Caccamo DV, Garcia JH. Intracytoplasmic lumina in ependymomas: an ultrastructural study. Ultrastruct Pathol. 1994;18: 371–380.
  • Remy L. The intracellular lumen: origin, role and implications of a cytoplasmic neostructure. Biol Cell. 1986; 56:97–105.
  • Remy L, Marvaldi J, Rua S, Secchi J, Lechene de la Porte P. The role of intracellular lumina in the repolarization process of a colonic adenocarcinoma cell line. Virchows Arch B. 1984; 46: 297–305.
  • Harris M, Vasudev KS, Anfield C, Wells S. Mucin-producing carcinomas of the breast: ultrastructural observations. Histopathology. 1978; 2:177–188.
  • Wahnschaffe U, Emura M, Mohr U. Development of intracytoplasmic lumina in diethylnitrosamine-induced tracheal papillomas of Syrian golden hamster. Virchows Arch B. 1997; 54: 59–66.
  • Bosland MC, Prinsen MK, Dirksen TMJ, Spit BJ. Characterization of adenocarcinomas of the dorsolateral prostate induced in Wistar rats by N-methyl-N-nitrourea, 7,12-dimethylbenz(a)anthracene, and 3-2′-dimethyl-4-aminobisphenyl, following sequential treatment with cytoperone acetate and testosterone propionate. Cancer Res. 1990; 50: 700–709.
  • Dermer GB, Sherwin RP. Autoradiographic localization of glycoprotein in human breast cancer cells maintained in organ culture after incubation with [3H]fucose or [3H] glucosamine. Cancer Res. 1975; 35: 63–67.
  • Hagiwara H, Ohwada, Fujimoto T. Intracytoplasmic lumina in human oviduct epithelium. Ultrastruct Pathol. 1997; 21: 163–172.
  • Ro JY, el-Naggar A, Ayala AG, Mody DR, Ordonez NG. Signet-ring-cell carcinoma of the prostate: electron-microscopic and immunohistochemical studies of eight cases. Am J Surg Pathol. 1988; 12: 453–460.
  • Kuroda N, Yamsaki I, Nakayama H, et al. Prostatic signet-ring cell carcinoma: case report and literature review. Pathol Int. 1999; 49: 457–461.
  • Jiang Z, Zhang H, Chen J, Liu L, Zhou J. Pathologic diagnosis and histogenesis of primary signet ring cell carcinoma of the prostate. Zhonghua Bingh Li Xue Za Zhi. 2002; 31: 514–517.
  • Leong Fj, Leong As, Swift J. Signet-ring carcinoma of the prostate. Pathol Res Pract. 1996; 192: 1232–1238.
  • Steinbrecher JS, Silverberg SG. Signet-ring cell carcinoma of the breast: the mucinous variant of infiltrating lobular carcinoma? Cancer. 1976; 37:828–840.
  • Garfield RE, Chacko S, Blose S. Phagocytosis by muscle cells. Lab Invest. 1975; 33:418–427.
  • Brouwer M, de Ley L, Feltkamp CA, Elema J, Jongsma APM. Serum-dependent ‘cannibalism’ and autodestruction in cultures of human small cell carcinoma of the lung. Cancer Res. 1984; 44: 2947–2951.
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with Wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26: 239–257.
  • Savill J. Recognition and phagocytosis of cells undergoing apoptosis. Br Med Bull. 1997; 53: 491–508.
  • Ren Y, Savill J. Apoptosis: the importance of being eaten. Cell Death Differ. 1998; 5: 563–568.
  • Flora PK, Gregory CD. Recognition of apoptotic cells by human macrophages: inhibition by a monocyte/macrophage-specific monoclonal antibody. Eur J Immunol. 1994; 24: 2625–2632.
  • Hart SP, Haslett C, Dransfield I. Recognition of apoptotic cells by phagocytes. Experientia. 1996; 52: 950–956.
  • Gregory CD, Pound JD. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J Pathol. 2011; 223: 177–194.
  • Overholtzer, M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007; 131: 966–979.
  • Le Bot N. Entosis: cell death by invasion. Nat Cell Biol. 2007;9: 1346.
  • Mailleux AA, Overholtzer M, Brugge JS. L’entose, mort cellulaire par cannibalisme entre cellules tumorales. [Entosis, a cell death process related to cell cannibalism between tumor cells.] Med Sci (Paris). 2008; 24:246–248.
  • White E. Entosis: it’s a cell-eat-cell world. Cell. 2007; 131: 840–842.
  • Qan Y, Shi Y. Natural killer cells go inside: entosis versus cannibalism. Cell Res. 2009; 19: 1320–1321.
  • Florey O, Krajcovic M, Sun Q, Overholtzer M. Entosis. Curr Biol. 2010; 20: R88–R89.
  • Janssen A, Medema RH. Entosis: aneuploidy by invasion. Nature Cell Biol. 2011; 13:199–201.
  • Yuan J, Kroemer G. Alternative cell death mechanisms in development and beyond. Genes Dev. 2011; 24: 2592–2602.
  • Lazarides E, Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974; 71:4742–4746.
  • Lindberg U. Depolymerization of F-actin by deoxyribonuclease I. Cell. 1976 7:531–542.
  • Hitchcock SE. Actin deoxyroboncuclease I interaction: depolymerization and nucleotide exchange. J Biol Chem. 1980; 255: 5668–5673.
  • Khaitlina SY, Moraczewska J, Strzelecka-Golaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem. 1993;218: 911–920.
  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC. Atomic structure of the actin: DNase I complex. Nature. 1990; 347: 37–44.
  • Oztug Durer ZA, Diraviyam K, Sept D, Kudryashov DS, Reisler E. F-actin structure destabilization and DNase I binding loop: fluctuations mutational cross-linking and electron microscopy analysis of loop states and effects on F-actin. J Mol Biol. 2010; 395: 544–557.
  • Taper HS. Evaluation of the validity of the histochemical lead nitrate technique for alkaline and acid deoxyribonuclease. J Histochem Cytochem. 1979; 27: 1483–1490.
  • Taper HS. Reversibility of acid and alkaline deoxyribonuclease deficiency in malignant tumor cells. J Histochem Cytochem. 1981; 29:1053–1060.
  • Taper HS, Deckers CO, Deckers-Passau LO. Increase in nuclease activity as a possible means for detecting tumor cell sensitivity to anticancer agents. Cancer. 1981; 47: 523–529.
  • Taper HS, de Gerlache J, Lans M, Roberfroid M. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pretreatment. Int J Cancer. 1987; 40: 575–579.
  • Amaral JB, Urabayashi MS, Machado-Santelli GM. Cell death and lumen formation in spheroids of MCF-7 cells. Cell Biol Int. 2010;34:267–274.
  • Montironi R, Galluzzi CM, Diamanti L, Taborro R, Scarpelli M, Pisani E. Prostatic intra-epithelial neoplasia: qualitative and quantitative analyses of the blood capillary architecture on thin tissue sections. Pathol Res Pract. 1993; 189:542–548.
  • Gilloteaux J, Tomasello LM, Elgison DA. Lipid deposits and lipo-mucosomes in human cholecystitis and epithelial metaplasia in chronic cholecystitis. Ultrastruct Pathol. 2003; 27: 313–321.
  • Qian B-Z, Li J, Zhang H, et al. 2011. CCL2 recruits inflammatory monocytes to facilitate breast-tumours metastasis. Nature; 475: 222–225.
  • Day ED. Vascular relationships of tumor and host. Prog Exp Tumor Res. 1964;4: 57–97.
  • Facciabene A, Peng X, Hagemann IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature. 2011; 475: 226–230.
  • Wernert N, Kaminski A, Haddouti el-M, Hahne JC. Tumor-stroma interactions of metastatic prostate cancer cell lines: analyses using microarrays. Methods Mol Biol. 2007; 382: 223–237.
  • Peng YB, Zhou J, Gao Y, et al. Normal prostate-derived stromal cells stimulate prostate cancer development. Cancer Sci. 2011; 102:1630–1635.
  • Reinhold HS. Improved microcirculation in irradiated tumours. Eur J Cancer.1971; 7: 273–280.
  • Bizik J, Kankuri E, Ristimäki E, et al. Cell–cell contacts trigger programmed necrosis and induce cyclooxygenase-2 expression. Cell Death Diff. 2004; 11, 183–195.
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407: 249–257.
  • Gullino PM. Angiogenesis and oncogenesis. J Natl Cancer Inst. 1978; 41: 1329–1341.
  • Nicosia RF, Tchao R, Leighton J. Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Res. 1983;43: 2159–2166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.