448
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Electron Microscopy of Astrocyte Changes and Subtypes in Traumatic Human Edematous Cerebral Cortex: A Review

, MD, DMSci, DHC
Pages 417-424 | Received 09 Apr 2013, Accepted 30 Jul 2013, Published online: 17 Oct 2013

References

  • Allen IV, Kirk J, Maynard RL, et al. Experimental penetrating head injury: some aspects of light microscopical and ultrastructural abnormalities. Acta Neurochir Suppl (Wien) 1983;32: 99–104
  • Allen IV, Kirk J, Maynard RL, et al. An ultrastructural study of experimental high velocity penetrating head injury. Acta Neuropathol 1983;59: 277–82
  • Barron KD, Dentinger MP, Kimelberg HK, et al. Ultrastructural features of a brain injury model in cat, I: vascular and neuroglial changes and the prevention of astroglial swelling by a fluorenyl (aryloxy) alkanoic acid derivative. Acta Neuropathol 1988;75: 295–307
  • Bullock R, Maxwell WL, Graham DI, et al. Glial swelling following human cerebral contusion: an ultrastructural study. J Neurosurg Psychiatr 1991;54: 427–34
  • Butt AM, Kirvell S. Glial cells in transected optic nerves of immature rats, II: an immunolohistochemical study. J Neurocytol 1996;25: 381–92
  • Castejón OJ. Electron microscopic study of capillary wall in human cerebral edema. J Neuropathol Exp Neurol 1980;39: 296–328
  • Castejón OJ. Electron microscopic study of central axons degeneration in traumatic human brain edema. J Submicrosc Cytol 1985;17: 703–718
  • Castejón OJ. Ultrastructural alterations of human cortical capillary basement membrane in perifocal brain edema. J Submicrosc Cytol Pathol 1988;20: 519–36
  • Castejón OJ, Valero C, Díaz, M. Synaptic degenerative changes in human traumatic brain edema: an electron microscopic study of cerebral cortical biopsies. J Neurosurg Sci 1995;39: 47–65
  • Castejón OJ, Valero C, Díaz, M. Light and electron microscope study of nerve cells in traumatic edematous human cerebral cortex. Brain Injury 1997;11: 363–88
  • Castejón, O.J. Morphological astrocytic changes in complicated human brain trauma: a light and electron microscopic study. Brain Injury 1998;12: 409–27
  • Castejón OJ. Electron microscopic analysis of cortical biopsies in patients with traumatic brain injuries and dysfunction of neurobehavioural system. J Submicrosc Cytol Pathol 1998;30: 145–56
  • Castejón OJ. Astrocyte subtypes in the gray matter of injured human cerebral cortex: a transmission electron microscopic study. Brain Injury 1999;13: 291–304
  • Castejón OJ, Castejón HV, Diaz M, Castellano A. Consecutive light microscopy, scanning-transmission electron microscopy and transmisión electron microscopy of traumatic human brain oedema and ischaemic brain damage. Histol Histopathol 2001;16: 1117–34
  • Castejón OJ, Díaz M, Castejón HV, Castellano A. Glycogen-rich and glycogen-depleted astrocytes in the oedematous human cerebral cortex associated with brain trauma, tumours and congenital malformations: an electron microscopy study. Brain Injury 2002;116: 109–32
  • Castejón OJ. Lysosome abnormalities and lipofucsin content of nerve cells of edematous cerebral cortex. J Submicrosc Cytol Pathol 2004;36: 263–71
  • Castejón OJ, Arismendi G. Nerve cell death types in the edematous human cerebral cortex. J Submicrosc Cytol Pathol 2006;38: 21–36
  • Castejón OJ. Morphological astrocytic changes in human edematous cerebral cortex. In: Electron Microscopy of Human Brain Edema. Maracaibo. Venezuela: Astrodata; 2008: 153–66
  • Castejón OJ. Ultrastructural pathology of endothelial tight junctions in human brain oedema. Folia Neuropathol 2012;50: 118–29
  • Chen S, Pickard JD, Harris NG. Time course of cellular pathology after controlled cortical impact injury. Exp Neurol 2003;182: 87–102
  • Di X, Goforth PB, Bullock R, et al. Mechanical injury alters volume activated ion channels in cortical astrocytes. Acta Neurochir (Suppl) 2000;76: 379–83
  • Dietrich WD, Alonso O, Halley M, Busto R. Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats. Neurosurgery 1996;38: 533–41
  • Farooque M, Badonic T, Olsson Y, Holtz, A. Astrocytic reaction after graded spinal cord compression in rats: immunohistochemical studies on glial fibrillary acidic protein and vimentin. J Neurotrauma 1995;12: 41–52
  • Fujisawa H, Maxwell WL, Graham DI, et al. Focal microvascular occlusion after acute subdural haematoma in the rat: a mechanism for ischaemic damage and brain swelling? Acta Neurochir (Suppl) (Wien) 1994;60: 193–6
  • Hatten ME, Liem, RHF, Shelanski ML, Mason CA. Astroglia in CNS injury. Glia 1991;4: 233–43
  • Haymaker W, Miguel J, Ibrahim MZM. Glycogen accumulation following brain trauma. Top Probl Psychiatr Neurol 1970;10: 71–87
  • Persson LI, Rosengren LE, Hansson HA. Ultrastructural studies on blood–brain barrier dysfunction around cerebral stab wounds, aggravated by acute ethanol intoxication. Acta Neurol Scandinav 1978;57: 405–17
  • Povlishock JT, Becker DP, Sullivan HG, Miller JD. Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res 1978;153: 223–39
  • Povlishock JT. The morphopathological responses in head injuries of varying severity. In: Becker DP, Povlishock JT, eds. Central Nervous System Trauma: Status Report. Washington, DC: NINCDS, 1985:443–55
  • Ragaisis V. Brain contusion: morphology pathogenesis and treatment. Medicina (Kaunas) 2002;38: 243–9
  • Raivich G, Bohatschek M, Kloss CU, et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 2002;30: 77–105
  • Vajtr D, Benada O, Kukacka J, et al. Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood–brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiol Res 2009;58: 263–8
  • Yarnell AM, Shaughness MC, Barry ES, et al. Blast traumatic brain injury in the rat using a blast overpressure model. Curr Protoc Neurosci 2013;9: 9–41
  • Mathew P, Bullock R, Graham DI, et al. A new experimental model of contusion in the rat: histopathological analysis and temporal patterns of cerebral blood flow disturbance. J Neurosurg 1996;85: 860–70
  • Nicchia GP, Frigeri A, Liuzzi GM, Svelto M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J 2003;17: 1508–10
  • Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 2004;18: 1291–3
  • Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci 2003;4: 991–1001
  • Lehmann GL, Gradilone SA, Marinelli RA. Aquaporin water channels in central nervous system. Curr Neurovasc Res 2004;1: 293–303
  • Suzuki R, Okuda M, Asai J, et al. Astrocytes co-express aquaporin-1, -4, and vascular endothelial growth factor in brain edema tissue associated with brain contusion. Acta Neurochirurg (Suppl) 2006;96: 398–401
  • Zhao J, Moore AN, Clifton GL, Dash PK. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosc Res 2005;82: 499–506
  • Ghabriel MN, Thomas A, Vink R. Magnesium restores altered aquaporin-4 immunoreativity following raumatic brain injury to a pre-injury state. Acta Neurochir (Suppl) 2006;96: 402–6
  • Sobue K, Asai K, Katsuya H. Aquaporin water channels in the brain and molecular mechanism of brain edema. Nippon Rinsho 2006;64: 1181–9
  • Hajós F, Csillag A. The remote astroglial response (RAR): a holistic approach for evaluating the effects of lesions of the central nervous system. Neurochem Res 1995;20: 571–7
  • Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab 2003;23: 137–49
  • Ito U, Kuroiwa T, Hanyu S, et al. Temporal profile of experimental ischemic edema after threshold amount of insult to induce infarction, ultrastructure, gravimetry and Evans' blue extravasation. Acta Neurochir (Suppl) 2003;86: 131–5
  • Kaur C, Slingh J, Lim MK, et al. Ultrastructural changes of macroglial cells in the rat brain following an exposure to a non-penetrative blast. Ann Acad Med (Singapore) 1997;26: 27–9
  • Kaur C, Ling EA. Blood–brain barrier in hypoxic–ischemic conditions. Curr Neurovasc Res 2008;5: 71–81
  • Tóth Z, Séress L, Tóth P, et al. A common morphological response of astrocytes to various injuries: “dark” astrocytes: a light and electron microscopic analysis. J Hirnforsch 1997;38: 173–86
  • Hossain MZ, Peeling J, Sutherland R, et al. Ischemia-induced cellular redistribution of the astrocytic gap junctional protein connexin43 in rat brain. Brain Res 1994;652: 311–22
  • Theriault E, Frankenstein UN, Hertzberg EL, Nagy JI. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. J Comp Neurol 1997;382: 199–214
  • Nillson P, Hillered L, Olson L, et al. Regional changes in interstitial K+ and Ca2+ levels following cortical compression trauma in rats. Cerebr Blood Flow Metab 1963;13: 183–92
  • Morley P, Tauskela JS, Hakim AM. Calcium overload. In: Walz W, ed. Cerebral Ischemia. New Jersey: Humana, 1999:69–104
  • Anders JJ. Lactic acidification of GAP junctional communication in “in vitro” astrocytes as measured by fluorescence recovery after laser photobleaching. Glia 1988;1: 371–9
  • Rash JE, Duffy HS, Dudek FE, et al. Grid-mapped freeze–fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 1997;388: 265–92
  • Monteiro RAF, Rocha E, Marini-Abreu MO. Age-related morphometric changes occurring in the somata of astrocytes of the granular layer of rat neocerebellar cortex (Crus I and Crus II). Histol Histopathol 1992;7: 427–44
  • Magistreti PJ, Hoff PR, Martin JL. Adenosine stimulates glycogenolisis in mouse cerebral cortex: a possible coupling mechanism between neuronal activity and energy metabolism. J Neurosci 1986;6: 2558–62
  • Al-Ali SY, al-Hussain SM. An ultrastructural study of the phagocytic activity of astrocytes in adult rat brain. J Anat 1996;188: 257–62
  • Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 2005;80: 1326–38
  • Sharma, HS, Olsson Y, Cervos-Navarro J. Early perifocal cell changes in traumatic injury of spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis: experimental study in the rat. Acta Neuropathol (Berl) 1993;85: 145–53
  • Merryl JE. Lymphokines, morokines and glial cells. In: Fuxe K, Agnati LF, eds. Volume Transmission in the Brain: Novel Mechanism for Neural Transmission. New York: Raven, 1991:267–77
  • Eddleston M, Mucke L. Molecular profile of reactive astrocytes implications for their role in neurologic disease. Neuroscience 1993;54: 15–36
  • Martin D. The role of glia in the inactivation of neurotransmitter. In: Kettenmann H, Ransom BR, eds. Neuroglia. New York: Oxford University Press, 1995:732–45
  • Kimelberg HK, Goderic SK, Higman S, et al. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 1990;10: 1583–91
  • Kimelberg HK. Astrocytic edema in CNS trauma. J Neurotrauma (Suppl) 1992;1: S71–81
  • Kimelberg HK. Brain edema. In: Kettenmann H, Ramson BR, eds. Neuroglia. New York: Oxford University Press, 1995:919–35
  • Levi G, Gallo V. Release of neuroactive aminoacids from glia. In: Kettenman H, Ransom BR, eds. Neuroglia. New York: Oxford University Press, 1995:815–26
  • Clendenon NR, Allen N. Organelle and membrane defects: lysosomes, mitochondria and cell membranes. In: Popp A, Bowoke RS, Nelson LR, Kimelberg HK, eds. Neural Trauma: Seminars in Neurological Surgery. New York: Raven, 1979:115–29
  • Bataglioni G, Martin DL. GABA synthesis in brain slices in dependent on glutamine produced in astrocytes. Neurochem Res 1991;16: 151–6
  • Schousboe A. Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 1981;22: 1–145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.